Photocatalytic removal of aldrin and dieldrin using graphene oxide and TiO2‐doped CuFe2O4
BACKGROUND Conventional treatment processes and existing photocatalysts have proven insufficient in efficiently removing aldrin and dieldrin. Consequently, this study aimed to investigate the removal of aldrin and dieldrin from surface water using a titanium dioxide/graphene oxide/copper ferrite (Ti...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2025-01, Vol.100 (1), p.138-154 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 138 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 100 |
creator | Akçağlar, Sevil |
description | BACKGROUND
Conventional treatment processes and existing photocatalysts have proven insufficient in efficiently removing aldrin and dieldrin. Consequently, this study aimed to investigate the removal of aldrin and dieldrin from surface water using a titanium dioxide/graphene oxide/copper ferrite (TiO₂/GO/CuFe₂O₄) nanocomposite.
RESULTS
The highest photodegradation efficiencies for aldrin (100%) and dieldrin (99%) were achieved with a TiO₂/GO/CuFe₂O₄ nanocomposite dosage of 1.3 mg L−1, at a sunlight intensity of 9 W m−2 and an optimal photodegradation time of 25 min. The maximum UV absorption wavelength of the TiO₂/GO/CuFe₂O₄ nanocomposite was observed at 365 nm. The quantum yield of the nanocomposite was recorded as 2.69 × 102 mol einstein−1, and its bandgap energy was determined to be 3.31 eV. The first‐order kinetic rate constants for aldrin and dieldrin were calculated as 0.05 and 0.047 min−1, respectively. X‐ray diffraction analysis confirmed the crystal structure of CuFe₂O₄/TiO₂, while Fourier transform infrared spectroscopy detected carboxylic, epoxy, carbonyl and other oxygenated groups within the TiO₂/GO/CuFe₂O₄ nanocomposite. Scanning electron microscopy and transmission electron microscopy images revealed that CuFe₂O₄ was situated on the outer layer of GO. Energy‐dispersive X‐ray analysis identified the elemental composition of the TiO₂/GO/CuFe₂O₄ nanocomposite as comprising GO, C, Cu, Fe, Ti and O. A reusability study demonstrated that the nanocomposite maintained excellent performance, achieving 99% removal efficiency after 79 cycles and 97% after 100 cycles.
CONCLUSIONS
The TiO₂/GO/CuFe₂O₄ nanocomposite effectively removed aldrin and dieldrin from surface water. This nanocomposite holds promise for the remediation of other aquatic ecosystems, such as bays, rivers and ocean waters. © 2024 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI). |
doi_str_mv | 10.1002/jctb.7759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3142551176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142551176</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1889-2d07ed1847274f2814b37bbca90ca1594262a4b570fdedb451cf4e9acae0678a3</originalsourceid><addsrcrecordid>eNotkL1OwzAUhS0EEqUw8AaWmNPajv8yQkQLqFIZysRgObbTukrj4CRANx6BZ-RJaCjTPVf6dI70AXCN0QQjRKZb0xUTIVh2AkYYZSKhnKNTMEKEy4Qwwc7BRdtuEUJcEj4Cr8-b0AWjO13tO29gdLvwrisYSqgrG30NdW2h9e749K2v13AddbNxtYPh01v3R6z8kvx8fdvQOAvzfubIkl6Cs1JXrbv6v2PwMrtf5Q_JYjl_zG8XSYOlzBJikXAWSyqIoCWRmBapKAqjM2Q0ZhklnGhaMIFK62xBGTYldZk22iEupE7H4ObY28Tw1ru2U9vQx_owqVJMCWMYC36gpkfqw1dur5rodzruFUZqEKcGcWoQp57y1d0Q0l8bAmOu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142551176</pqid></control><display><type>article</type><title>Photocatalytic removal of aldrin and dieldrin using graphene oxide and TiO2‐doped CuFe2O4</title><source>Wiley Online Library All Journals</source><creator>Akçağlar, Sevil</creator><creatorcontrib>Akçağlar, Sevil</creatorcontrib><description>BACKGROUND
Conventional treatment processes and existing photocatalysts have proven insufficient in efficiently removing aldrin and dieldrin. Consequently, this study aimed to investigate the removal of aldrin and dieldrin from surface water using a titanium dioxide/graphene oxide/copper ferrite (TiO₂/GO/CuFe₂O₄) nanocomposite.
RESULTS
The highest photodegradation efficiencies for aldrin (100%) and dieldrin (99%) were achieved with a TiO₂/GO/CuFe₂O₄ nanocomposite dosage of 1.3 mg L−1, at a sunlight intensity of 9 W m−2 and an optimal photodegradation time of 25 min. The maximum UV absorption wavelength of the TiO₂/GO/CuFe₂O₄ nanocomposite was observed at 365 nm. The quantum yield of the nanocomposite was recorded as 2.69 × 102 mol einstein−1, and its bandgap energy was determined to be 3.31 eV. The first‐order kinetic rate constants for aldrin and dieldrin were calculated as 0.05 and 0.047 min−1, respectively. X‐ray diffraction analysis confirmed the crystal structure of CuFe₂O₄/TiO₂, while Fourier transform infrared spectroscopy detected carboxylic, epoxy, carbonyl and other oxygenated groups within the TiO₂/GO/CuFe₂O₄ nanocomposite. Scanning electron microscopy and transmission electron microscopy images revealed that CuFe₂O₄ was situated on the outer layer of GO. Energy‐dispersive X‐ray analysis identified the elemental composition of the TiO₂/GO/CuFe₂O₄ nanocomposite as comprising GO, C, Cu, Fe, Ti and O. A reusability study demonstrated that the nanocomposite maintained excellent performance, achieving 99% removal efficiency after 79 cycles and 97% after 100 cycles.
CONCLUSIONS
The TiO₂/GO/CuFe₂O₄ nanocomposite effectively removed aldrin and dieldrin from surface water. This nanocomposite holds promise for the remediation of other aquatic ecosystems, such as bays, rivers and ocean waters. © 2024 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.7759</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>adsorption ; Aldrin ; Aquatic ecosystems ; Biotechnology ; Carbonyl compounds ; Carbonyls ; Chemical composition ; Chemical technology ; Copper ; Copper ferrite ; Crystal structure ; Dieldrin ; Electron microscopy ; Fourier transforms ; Graphene ; Image transmission ; Infrared analysis ; Infrared spectroscopy ; Insecticides ; Iron ; Light intensity ; Marine ecosystems ; Microscopy ; Nanocomposites ; Photocatalysis ; photocatalytic ; Photodegradation ; Rate constants ; Scanning electron microscopy ; Surface water ; TiO2/GO/CuFe2O4 ; Titanium dioxide ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2025-01, Vol.100 (1), p.138-154</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5386-1862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.7759$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.7759$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Akçağlar, Sevil</creatorcontrib><title>Photocatalytic removal of aldrin and dieldrin using graphene oxide and TiO2‐doped CuFe2O4</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
Conventional treatment processes and existing photocatalysts have proven insufficient in efficiently removing aldrin and dieldrin. Consequently, this study aimed to investigate the removal of aldrin and dieldrin from surface water using a titanium dioxide/graphene oxide/copper ferrite (TiO₂/GO/CuFe₂O₄) nanocomposite.
RESULTS
The highest photodegradation efficiencies for aldrin (100%) and dieldrin (99%) were achieved with a TiO₂/GO/CuFe₂O₄ nanocomposite dosage of 1.3 mg L−1, at a sunlight intensity of 9 W m−2 and an optimal photodegradation time of 25 min. The maximum UV absorption wavelength of the TiO₂/GO/CuFe₂O₄ nanocomposite was observed at 365 nm. The quantum yield of the nanocomposite was recorded as 2.69 × 102 mol einstein−1, and its bandgap energy was determined to be 3.31 eV. The first‐order kinetic rate constants for aldrin and dieldrin were calculated as 0.05 and 0.047 min−1, respectively. X‐ray diffraction analysis confirmed the crystal structure of CuFe₂O₄/TiO₂, while Fourier transform infrared spectroscopy detected carboxylic, epoxy, carbonyl and other oxygenated groups within the TiO₂/GO/CuFe₂O₄ nanocomposite. Scanning electron microscopy and transmission electron microscopy images revealed that CuFe₂O₄ was situated on the outer layer of GO. Energy‐dispersive X‐ray analysis identified the elemental composition of the TiO₂/GO/CuFe₂O₄ nanocomposite as comprising GO, C, Cu, Fe, Ti and O. A reusability study demonstrated that the nanocomposite maintained excellent performance, achieving 99% removal efficiency after 79 cycles and 97% after 100 cycles.
CONCLUSIONS
The TiO₂/GO/CuFe₂O₄ nanocomposite effectively removed aldrin and dieldrin from surface water. This nanocomposite holds promise for the remediation of other aquatic ecosystems, such as bays, rivers and ocean waters. © 2024 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).</description><subject>adsorption</subject><subject>Aldrin</subject><subject>Aquatic ecosystems</subject><subject>Biotechnology</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Chemical composition</subject><subject>Chemical technology</subject><subject>Copper</subject><subject>Copper ferrite</subject><subject>Crystal structure</subject><subject>Dieldrin</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Image transmission</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Insecticides</subject><subject>Iron</subject><subject>Light intensity</subject><subject>Marine ecosystems</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Photocatalysis</subject><subject>photocatalytic</subject><subject>Photodegradation</subject><subject>Rate constants</subject><subject>Scanning electron microscopy</subject><subject>Surface water</subject><subject>TiO2/GO/CuFe2O4</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNotkL1OwzAUhS0EEqUw8AaWmNPajv8yQkQLqFIZysRgObbTukrj4CRANx6BZ-RJaCjTPVf6dI70AXCN0QQjRKZb0xUTIVh2AkYYZSKhnKNTMEKEy4Qwwc7BRdtuEUJcEj4Cr8-b0AWjO13tO29gdLvwrisYSqgrG30NdW2h9e749K2v13AddbNxtYPh01v3R6z8kvx8fdvQOAvzfubIkl6Cs1JXrbv6v2PwMrtf5Q_JYjl_zG8XSYOlzBJikXAWSyqIoCWRmBapKAqjM2Q0ZhklnGhaMIFK62xBGTYldZk22iEupE7H4ObY28Tw1ru2U9vQx_owqVJMCWMYC36gpkfqw1dur5rodzruFUZqEKcGcWoQp57y1d0Q0l8bAmOu</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Akçağlar, Sevil</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5386-1862</orcidid></search><sort><creationdate>202501</creationdate><title>Photocatalytic removal of aldrin and dieldrin using graphene oxide and TiO2‐doped CuFe2O4</title><author>Akçağlar, Sevil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1889-2d07ed1847274f2814b37bbca90ca1594262a4b570fdedb451cf4e9acae0678a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>adsorption</topic><topic>Aldrin</topic><topic>Aquatic ecosystems</topic><topic>Biotechnology</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Chemical composition</topic><topic>Chemical technology</topic><topic>Copper</topic><topic>Copper ferrite</topic><topic>Crystal structure</topic><topic>Dieldrin</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Image transmission</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Insecticides</topic><topic>Iron</topic><topic>Light intensity</topic><topic>Marine ecosystems</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Photocatalysis</topic><topic>photocatalytic</topic><topic>Photodegradation</topic><topic>Rate constants</topic><topic>Scanning electron microscopy</topic><topic>Surface water</topic><topic>TiO2/GO/CuFe2O4</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akçağlar, Sevil</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akçağlar, Sevil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocatalytic removal of aldrin and dieldrin using graphene oxide and TiO2‐doped CuFe2O4</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2025-01</date><risdate>2025</risdate><volume>100</volume><issue>1</issue><spage>138</spage><epage>154</epage><pages>138-154</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
Conventional treatment processes and existing photocatalysts have proven insufficient in efficiently removing aldrin and dieldrin. Consequently, this study aimed to investigate the removal of aldrin and dieldrin from surface water using a titanium dioxide/graphene oxide/copper ferrite (TiO₂/GO/CuFe₂O₄) nanocomposite.
RESULTS
The highest photodegradation efficiencies for aldrin (100%) and dieldrin (99%) were achieved with a TiO₂/GO/CuFe₂O₄ nanocomposite dosage of 1.3 mg L−1, at a sunlight intensity of 9 W m−2 and an optimal photodegradation time of 25 min. The maximum UV absorption wavelength of the TiO₂/GO/CuFe₂O₄ nanocomposite was observed at 365 nm. The quantum yield of the nanocomposite was recorded as 2.69 × 102 mol einstein−1, and its bandgap energy was determined to be 3.31 eV. The first‐order kinetic rate constants for aldrin and dieldrin were calculated as 0.05 and 0.047 min−1, respectively. X‐ray diffraction analysis confirmed the crystal structure of CuFe₂O₄/TiO₂, while Fourier transform infrared spectroscopy detected carboxylic, epoxy, carbonyl and other oxygenated groups within the TiO₂/GO/CuFe₂O₄ nanocomposite. Scanning electron microscopy and transmission electron microscopy images revealed that CuFe₂O₄ was situated on the outer layer of GO. Energy‐dispersive X‐ray analysis identified the elemental composition of the TiO₂/GO/CuFe₂O₄ nanocomposite as comprising GO, C, Cu, Fe, Ti and O. A reusability study demonstrated that the nanocomposite maintained excellent performance, achieving 99% removal efficiency after 79 cycles and 97% after 100 cycles.
CONCLUSIONS
The TiO₂/GO/CuFe₂O₄ nanocomposite effectively removed aldrin and dieldrin from surface water. This nanocomposite holds promise for the remediation of other aquatic ecosystems, such as bays, rivers and ocean waters. © 2024 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.7759</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5386-1862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2025-01, Vol.100 (1), p.138-154 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_3142551176 |
source | Wiley Online Library All Journals |
subjects | adsorption Aldrin Aquatic ecosystems Biotechnology Carbonyl compounds Carbonyls Chemical composition Chemical technology Copper Copper ferrite Crystal structure Dieldrin Electron microscopy Fourier transforms Graphene Image transmission Infrared analysis Infrared spectroscopy Insecticides Iron Light intensity Marine ecosystems Microscopy Nanocomposites Photocatalysis photocatalytic Photodegradation Rate constants Scanning electron microscopy Surface water TiO2/GO/CuFe2O4 Titanium dioxide Transmission electron microscopy X-ray diffraction |
title | Photocatalytic removal of aldrin and dieldrin using graphene oxide and TiO2‐doped CuFe2O4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocatalytic%20removal%20of%20aldrin%20and%20dieldrin%20using%20graphene%20oxide%20and%20TiO2%E2%80%90doped%20CuFe2O4&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Ak%C3%A7a%C4%9Flar,%20Sevil&rft.date=2025-01&rft.volume=100&rft.issue=1&rft.spage=138&rft.epage=154&rft.pages=138-154&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.7759&rft_dat=%3Cproquest_wiley%3E3142551176%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142551176&rft_id=info:pmid/&rfr_iscdi=true |