Diffusion behaviors of lithium ions at the cathode/electrolyte interface from a global neural network potential

The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research. However, the diffusion behaviors at the cathode/electrolyte interface still remain unclear due to the complexity of interfaces. Despite achieving some progress through ab initio molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3388-33817
Hauptverfasser: Sun, Yufeng, Shang, Cheng, Fang, Yi-Bin, Liu, Zhi-Pan, Gong, Xin-Gao, Yang, Ji-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33817
container_issue 48
container_start_page 3388
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Sun, Yufeng
Shang, Cheng
Fang, Yi-Bin
Liu, Zhi-Pan
Gong, Xin-Gao
Yang, Ji-Hui
description The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research. However, the diffusion behaviors at the cathode/electrolyte interface still remain unclear due to the complexity of interfaces. Despite achieving some progress through ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations, a full understanding of Li-ion diffusion behavior requires direct simulation of the entire interface. This remains challenging due to the inherent limitations of current simulation methods. Here, we develop a global neural network potential to reveal the Li ion diffusion behaviors at the interface between the LiCoO 2 cathode and liquid electrolytes (EC, DMC and LiPF 6 ) by performing long-term molecular dynamics simulations. We identify four kinds of interfacial diffusion behaviors by analyzing the trajectories of Li ions. While the inactive Li ions are immobile, the active Li ions can shuttle between the interface and solution regions, hop between different interfacial sites, or diffuse as they would in pure electrolytes. Among all diffusion behaviors, only the diffusion across the interface can contribute to the effective conductivity and thus the device performance. Based on the above findings, we further study the influence of electrolyte concentration and interfacial compounds on the diffusion of interfacial Li ions. We show that 1 mol L −1 LiPF 6 has the largest conductivity across the interface, in agreement with the experimental results that 1 mol L −1 LiPF 6 is the most suitable electrolyte concentration. We further propose that Li 2 O could be used as an interface coating to improve the Li ion conductivity across the interface. Our work provides deep atomic insights into the dynamics of Li ions at the cathode/electrolyte interface and is expected to help the optimization of LIBs. The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research.
doi_str_mv 10.1039/d4ta05530f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142548842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142548842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-d9db4950720e0d97ffcc8b0802107f92d105a8d404ea43d2f506746e50d8c3743</originalsourceid><addsrcrecordid>eNpFkNFLwzAQh4MoOOZefBcCvgl11zZZm8exORUEX-ZzSZOLzeyamaTK_nvrJvNefgf3cXd8hFyncJ9CLqaaRQmc52DOyCgDDknBxOz81JflJZmEsIGhSoCZECPiltaYPljX0Rob-WWdD9QZ2trY2H5Lh0GgMtLYIFUyNk7jFFtU0bt2H5HaLqI3UiE13m2ppO-tq2VLO-z9IeK38x905yJ20cr2ilwY2Qac_OWYvK0e1oun5OX18Xkxf0lUWkBMtNA1ExyKDBC0KIxRqqyHr7MUCiMynQKXpWbAULJcZ4bDrGAz5KBLlRcsH5Pb496dd589hlhtXO-74WSVpyzjgwyWDdTdkVLeheDRVDtvt9LvqxSqX6fVkq3nB6erAb45wj6oE_fvPP8BxYR0DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142548842</pqid></control><display><type>article</type><title>Diffusion behaviors of lithium ions at the cathode/electrolyte interface from a global neural network potential</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Yufeng ; Shang, Cheng ; Fang, Yi-Bin ; Liu, Zhi-Pan ; Gong, Xin-Gao ; Yang, Ji-Hui</creator><creatorcontrib>Sun, Yufeng ; Shang, Cheng ; Fang, Yi-Bin ; Liu, Zhi-Pan ; Gong, Xin-Gao ; Yang, Ji-Hui</creatorcontrib><description>The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research. However, the diffusion behaviors at the cathode/electrolyte interface still remain unclear due to the complexity of interfaces. Despite achieving some progress through ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations, a full understanding of Li-ion diffusion behavior requires direct simulation of the entire interface. This remains challenging due to the inherent limitations of current simulation methods. Here, we develop a global neural network potential to reveal the Li ion diffusion behaviors at the interface between the LiCoO 2 cathode and liquid electrolytes (EC, DMC and LiPF 6 ) by performing long-term molecular dynamics simulations. We identify four kinds of interfacial diffusion behaviors by analyzing the trajectories of Li ions. While the inactive Li ions are immobile, the active Li ions can shuttle between the interface and solution regions, hop between different interfacial sites, or diffuse as they would in pure electrolytes. Among all diffusion behaviors, only the diffusion across the interface can contribute to the effective conductivity and thus the device performance. Based on the above findings, we further study the influence of electrolyte concentration and interfacial compounds on the diffusion of interfacial Li ions. We show that 1 mol L −1 LiPF 6 has the largest conductivity across the interface, in agreement with the experimental results that 1 mol L −1 LiPF 6 is the most suitable electrolyte concentration. We further propose that Li 2 O could be used as an interface coating to improve the Li ion conductivity across the interface. Our work provides deep atomic insights into the dynamics of Li ions at the cathode/electrolyte interface and is expected to help the optimization of LIBs. The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05530f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cathodes ; Conductivity ; Diffusion ; Diffusion coating ; Electrolytes ; Interfaces ; Ion diffusion ; Ions ; Lithium ; Lithium oxides ; Lithium-ion batteries ; Molecular dynamics ; Neural networks ; Trajectory analysis</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3388-33817</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-d9db4950720e0d97ffcc8b0802107f92d105a8d404ea43d2f506746e50d8c3743</cites><orcidid>0000-0001-7486-1514 ; 0009-0009-4927-6810 ; 0000-0002-2906-5217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Yufeng</creatorcontrib><creatorcontrib>Shang, Cheng</creatorcontrib><creatorcontrib>Fang, Yi-Bin</creatorcontrib><creatorcontrib>Liu, Zhi-Pan</creatorcontrib><creatorcontrib>Gong, Xin-Gao</creatorcontrib><creatorcontrib>Yang, Ji-Hui</creatorcontrib><title>Diffusion behaviors of lithium ions at the cathode/electrolyte interface from a global neural network potential</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research. However, the diffusion behaviors at the cathode/electrolyte interface still remain unclear due to the complexity of interfaces. Despite achieving some progress through ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations, a full understanding of Li-ion diffusion behavior requires direct simulation of the entire interface. This remains challenging due to the inherent limitations of current simulation methods. Here, we develop a global neural network potential to reveal the Li ion diffusion behaviors at the interface between the LiCoO 2 cathode and liquid electrolytes (EC, DMC and LiPF 6 ) by performing long-term molecular dynamics simulations. We identify four kinds of interfacial diffusion behaviors by analyzing the trajectories of Li ions. While the inactive Li ions are immobile, the active Li ions can shuttle between the interface and solution regions, hop between different interfacial sites, or diffuse as they would in pure electrolytes. Among all diffusion behaviors, only the diffusion across the interface can contribute to the effective conductivity and thus the device performance. Based on the above findings, we further study the influence of electrolyte concentration and interfacial compounds on the diffusion of interfacial Li ions. We show that 1 mol L −1 LiPF 6 has the largest conductivity across the interface, in agreement with the experimental results that 1 mol L −1 LiPF 6 is the most suitable electrolyte concentration. We further propose that Li 2 O could be used as an interface coating to improve the Li ion conductivity across the interface. Our work provides deep atomic insights into the dynamics of Li ions at the cathode/electrolyte interface and is expected to help the optimization of LIBs. The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research.</description><subject>Cathodes</subject><subject>Conductivity</subject><subject>Diffusion</subject><subject>Diffusion coating</subject><subject>Electrolytes</subject><subject>Interfaces</subject><subject>Ion diffusion</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium oxides</subject><subject>Lithium-ion batteries</subject><subject>Molecular dynamics</subject><subject>Neural networks</subject><subject>Trajectory analysis</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQh4MoOOZefBcCvgl11zZZm8exORUEX-ZzSZOLzeyamaTK_nvrJvNefgf3cXd8hFyncJ9CLqaaRQmc52DOyCgDDknBxOz81JflJZmEsIGhSoCZECPiltaYPljX0Rob-WWdD9QZ2trY2H5Lh0GgMtLYIFUyNk7jFFtU0bt2H5HaLqI3UiE13m2ppO-tq2VLO-z9IeK38x905yJ20cr2ilwY2Qac_OWYvK0e1oun5OX18Xkxf0lUWkBMtNA1ExyKDBC0KIxRqqyHr7MUCiMynQKXpWbAULJcZ4bDrGAz5KBLlRcsH5Pb496dd589hlhtXO-74WSVpyzjgwyWDdTdkVLeheDRVDtvt9LvqxSqX6fVkq3nB6erAb45wj6oE_fvPP8BxYR0DQ</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Sun, Yufeng</creator><creator>Shang, Cheng</creator><creator>Fang, Yi-Bin</creator><creator>Liu, Zhi-Pan</creator><creator>Gong, Xin-Gao</creator><creator>Yang, Ji-Hui</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7486-1514</orcidid><orcidid>https://orcid.org/0009-0009-4927-6810</orcidid><orcidid>https://orcid.org/0000-0002-2906-5217</orcidid></search><sort><creationdate>20241210</creationdate><title>Diffusion behaviors of lithium ions at the cathode/electrolyte interface from a global neural network potential</title><author>Sun, Yufeng ; Shang, Cheng ; Fang, Yi-Bin ; Liu, Zhi-Pan ; Gong, Xin-Gao ; Yang, Ji-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-d9db4950720e0d97ffcc8b0802107f92d105a8d404ea43d2f506746e50d8c3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Conductivity</topic><topic>Diffusion</topic><topic>Diffusion coating</topic><topic>Electrolytes</topic><topic>Interfaces</topic><topic>Ion diffusion</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium oxides</topic><topic>Lithium-ion batteries</topic><topic>Molecular dynamics</topic><topic>Neural networks</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yufeng</creatorcontrib><creatorcontrib>Shang, Cheng</creatorcontrib><creatorcontrib>Fang, Yi-Bin</creatorcontrib><creatorcontrib>Liu, Zhi-Pan</creatorcontrib><creatorcontrib>Gong, Xin-Gao</creatorcontrib><creatorcontrib>Yang, Ji-Hui</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yufeng</au><au>Shang, Cheng</au><au>Fang, Yi-Bin</au><au>Liu, Zhi-Pan</au><au>Gong, Xin-Gao</au><au>Yang, Ji-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion behaviors of lithium ions at the cathode/electrolyte interface from a global neural network potential</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>12</volume><issue>48</issue><spage>3388</spage><epage>33817</epage><pages>3388-33817</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research. However, the diffusion behaviors at the cathode/electrolyte interface still remain unclear due to the complexity of interfaces. Despite achieving some progress through ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations, a full understanding of Li-ion diffusion behavior requires direct simulation of the entire interface. This remains challenging due to the inherent limitations of current simulation methods. Here, we develop a global neural network potential to reveal the Li ion diffusion behaviors at the interface between the LiCoO 2 cathode and liquid electrolytes (EC, DMC and LiPF 6 ) by performing long-term molecular dynamics simulations. We identify four kinds of interfacial diffusion behaviors by analyzing the trajectories of Li ions. While the inactive Li ions are immobile, the active Li ions can shuttle between the interface and solution regions, hop between different interfacial sites, or diffuse as they would in pure electrolytes. Among all diffusion behaviors, only the diffusion across the interface can contribute to the effective conductivity and thus the device performance. Based on the above findings, we further study the influence of electrolyte concentration and interfacial compounds on the diffusion of interfacial Li ions. We show that 1 mol L −1 LiPF 6 has the largest conductivity across the interface, in agreement with the experimental results that 1 mol L −1 LiPF 6 is the most suitable electrolyte concentration. We further propose that Li 2 O could be used as an interface coating to improve the Li ion conductivity across the interface. Our work provides deep atomic insights into the dynamics of Li ions at the cathode/electrolyte interface and is expected to help the optimization of LIBs. The diffusion of Li ions plays a vital role and has been the central topic of the Li-ion battery (LIB) research.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05530f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7486-1514</orcidid><orcidid>https://orcid.org/0009-0009-4927-6810</orcidid><orcidid>https://orcid.org/0000-0002-2906-5217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3388-33817
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3142548842
source Royal Society Of Chemistry Journals 2008-
subjects Cathodes
Conductivity
Diffusion
Diffusion coating
Electrolytes
Interfaces
Ion diffusion
Ions
Lithium
Lithium oxides
Lithium-ion batteries
Molecular dynamics
Neural networks
Trajectory analysis
title Diffusion behaviors of lithium ions at the cathode/electrolyte interface from a global neural network potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20behaviors%20of%20lithium%20ions%20at%20the%20cathode/electrolyte%20interface%20from%20a%20global%20neural%20network%20potential&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sun,%20Yufeng&rft.date=2024-12-10&rft.volume=12&rft.issue=48&rft.spage=3388&rft.epage=33817&rft.pages=3388-33817&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05530f&rft_dat=%3Cproquest_cross%3E3142548842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142548842&rft_id=info:pmid/&rfr_iscdi=true