Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing

In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Deo, Indu Kant, Choi, Youngsoo, Khairallah, Saad A, Reikher, Alexandre, Strantza, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Deo, Indu Kant
Choi, Youngsoo
Khairallah, Saad A
Reikher, Alexandre
Strantza, Maria
description In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This study introduces data-driven parameterized reduced-order models (ROMs) to predict distortion in LPBF across various machine process settings. We propose a ROM framework that combines Proper Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR) and compare its performance against a deep-learning based parameterized graph convolutional autoencoder (GCA). The POD-GPR model demonstrates high accuracy, predicting distortions within \(\pm0.001mm\), and delivers a computational speed-up of approximately 1800x.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142375913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142375913</sourcerecordid><originalsourceid>FETCH-proquest_journals_31423759133</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPzxwNdAmrdXZKi4FEWdLaF4lpSb6kjr49VbwA5zucO6ERULKlG8yIWYs9r5LkkSsC5HnMmLXUgXFSzIvtCs4KVJ3DEjmjRrOqIcGNXekkaByGnsPrSM4EWrTBGNvUBofHAXjLBgLFQbVgyzHw9ivL9i0Vb3H-Nc5Wx72l92RP8g9B_Sh7txAdqRappmQRb5Npfzv-gD4LENr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142375913</pqid></control><display><type>article</type><title>Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing</title><source>Free E- Journals</source><creator>Deo, Indu Kant ; Choi, Youngsoo ; Khairallah, Saad A ; Reikher, Alexandre ; Strantza, Maria</creator><creatorcontrib>Deo, Indu Kant ; Choi, Youngsoo ; Khairallah, Saad A ; Reikher, Alexandre ; Strantza, Maria</creatorcontrib><description>In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This study introduces data-driven parameterized reduced-order models (ROMs) to predict distortion in LPBF across various machine process settings. We propose a ROM framework that combines Proper Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR) and compare its performance against a deep-learning based parameterized graph convolutional autoencoder (GCA). The POD-GPR model demonstrates high accuracy, predicting distortions within \(\pm0.001mm\), and delivers a computational speed-up of approximately 1800x.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distortion ; Gaussian process ; Geometric accuracy ; Parameterization ; Powder beds ; Predictions ; Proper Orthogonal Decomposition ; Reduced order models ; Three dimensional printing</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Deo, Indu Kant</creatorcontrib><creatorcontrib>Choi, Youngsoo</creatorcontrib><creatorcontrib>Khairallah, Saad A</creatorcontrib><creatorcontrib>Reikher, Alexandre</creatorcontrib><creatorcontrib>Strantza, Maria</creatorcontrib><title>Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing</title><title>arXiv.org</title><description>In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This study introduces data-driven parameterized reduced-order models (ROMs) to predict distortion in LPBF across various machine process settings. We propose a ROM framework that combines Proper Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR) and compare its performance against a deep-learning based parameterized graph convolutional autoencoder (GCA). The POD-GPR model demonstrates high accuracy, predicting distortions within \(\pm0.001mm\), and delivers a computational speed-up of approximately 1800x.</description><subject>Distortion</subject><subject>Gaussian process</subject><subject>Geometric accuracy</subject><subject>Parameterization</subject><subject>Powder beds</subject><subject>Predictions</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduced order models</subject><subject>Three dimensional printing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPzxwNdAmrdXZKi4FEWdLaF4lpSb6kjr49VbwA5zucO6ERULKlG8yIWYs9r5LkkSsC5HnMmLXUgXFSzIvtCs4KVJ3DEjmjRrOqIcGNXekkaByGnsPrSM4EWrTBGNvUBofHAXjLBgLFQbVgyzHw9ivL9i0Vb3H-Nc5Wx72l92RP8g9B_Sh7txAdqRappmQRb5Npfzv-gD4LENr</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Deo, Indu Kant</creator><creator>Choi, Youngsoo</creator><creator>Khairallah, Saad A</creator><creator>Reikher, Alexandre</creator><creator>Strantza, Maria</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing</title><author>Deo, Indu Kant ; Choi, Youngsoo ; Khairallah, Saad A ; Reikher, Alexandre ; Strantza, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31423759133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distortion</topic><topic>Gaussian process</topic><topic>Geometric accuracy</topic><topic>Parameterization</topic><topic>Powder beds</topic><topic>Predictions</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduced order models</topic><topic>Three dimensional printing</topic><toplevel>online_resources</toplevel><creatorcontrib>Deo, Indu Kant</creatorcontrib><creatorcontrib>Choi, Youngsoo</creatorcontrib><creatorcontrib>Khairallah, Saad A</creatorcontrib><creatorcontrib>Reikher, Alexandre</creatorcontrib><creatorcontrib>Strantza, Maria</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deo, Indu Kant</au><au>Choi, Youngsoo</au><au>Khairallah, Saad A</au><au>Reikher, Alexandre</au><au>Strantza, Maria</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high thermal gradients that lead to unacceptable final part distortion. Accurate distortion prediction is essential for optimizing the 3D printing process and manufacturing a part that meets geometric accuracy requirements. This study introduces data-driven parameterized reduced-order models (ROMs) to predict distortion in LPBF across various machine process settings. We propose a ROM framework that combines Proper Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR) and compare its performance against a deep-learning based parameterized graph convolutional autoencoder (GCA). The POD-GPR model demonstrates high accuracy, predicting distortions within \(\pm0.001mm\), and delivers a computational speed-up of approximately 1800x.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3142375913
source Free E- Journals
subjects Distortion
Gaussian process
Geometric accuracy
Parameterization
Powder beds
Predictions
Proper Orthogonal Decomposition
Reduced order models
Three dimensional printing
title Data-Driven, Parameterized Reduced-order Models for Predicting Distortion in Metal 3D Printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-Driven,%20Parameterized%20Reduced-order%20Models%20for%20Predicting%20Distortion%20in%20Metal%203D%20Printing&rft.jtitle=arXiv.org&rft.au=Deo,%20Indu%20Kant&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142375913%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142375913&rft_id=info:pmid/&rfr_iscdi=true