Double-bracket quantum algorithms for quantum imaginary-time evolution
Efficiently preparing approximate ground-states of large, strongly correlated systems on quantum hardware is challenging and yet nature is innately adept at this. This has motivated the study of thermodynamically inspired approaches to ground-state preparation that aim to replicate cooling processes...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gluza, Marek Son, Jeongrak Bi, Hong Tiang Suzuki, Yudai Holmes, Zoë Ng, Nelly H Y |
description | Efficiently preparing approximate ground-states of large, strongly correlated systems on quantum hardware is challenging and yet nature is innately adept at this. This has motivated the study of thermodynamically inspired approaches to ground-state preparation that aim to replicate cooling processes via imaginary-time evolution. However, synthesizing quantum circuits that efficiently implement imaginary-time evolution is itself difficult, with prior proposals generally adopting heuristic variational approaches or using deep block encodings. Here, we use the insight that quantum imaginary-time evolution is a solution of Brockett's double-bracket flow and synthesize circuits that implement double-bracket flows coherently on the quantum computer. We prove that our Double-Bracket Quantum Imaginary-Time Evolution (DB-QITE) algorithm inherits the cooling guarantees of imaginary-time evolution. Concretely, each step is guaranteed to i) decrease the energy of an initial approximate ground-state by an amount proportion to the energy fluctuations of the initial state and ii) increase the fidelity with the ground-state. Thus DB-QITE provides a means to systematically improve the approximation of a ground-state using shallow circuits. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142374861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142374861</sourcerecordid><originalsourceid>FETCH-proquest_journals_31423748613</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgO5NfPXi0ewH1JJa2pSZ7NR_D2uhDXrgZmZoUKLgQjreR8g8oYZ0oprxteVaJA3RHyYDUZgrredcJLVj5lh5WdIJh0cxGPEH7aODUZr8KLJOM01k-wORnwO7QelY26_HKL9t3pcjiTR4Al65j6GXLwn9QLJrloZFsz8d_1Bj3qPFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142374861</pqid></control><display><type>article</type><title>Double-bracket quantum algorithms for quantum imaginary-time evolution</title><source>Free E- Journals</source><creator>Gluza, Marek ; Son, Jeongrak ; Bi, Hong Tiang ; Suzuki, Yudai ; Holmes, Zoë ; Ng, Nelly H Y</creator><creatorcontrib>Gluza, Marek ; Son, Jeongrak ; Bi, Hong Tiang ; Suzuki, Yudai ; Holmes, Zoë ; Ng, Nelly H Y</creatorcontrib><description>Efficiently preparing approximate ground-states of large, strongly correlated systems on quantum hardware is challenging and yet nature is innately adept at this. This has motivated the study of thermodynamically inspired approaches to ground-state preparation that aim to replicate cooling processes via imaginary-time evolution. However, synthesizing quantum circuits that efficiently implement imaginary-time evolution is itself difficult, with prior proposals generally adopting heuristic variational approaches or using deep block encodings. Here, we use the insight that quantum imaginary-time evolution is a solution of Brockett's double-bracket flow and synthesize circuits that implement double-bracket flows coherently on the quantum computer. We prove that our Double-Bracket Quantum Imaginary-Time Evolution (DB-QITE) algorithm inherits the cooling guarantees of imaginary-time evolution. Concretely, each step is guaranteed to i) decrease the energy of an initial approximate ground-state by an amount proportion to the energy fluctuations of the initial state and ii) increase the fidelity with the ground-state. Thus DB-QITE provides a means to systematically improve the approximation of a ground-state using shallow circuits.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brackets ; Circuits ; Evolutionary algorithms ; Quantum computers ; Synthesis</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gluza, Marek</creatorcontrib><creatorcontrib>Son, Jeongrak</creatorcontrib><creatorcontrib>Bi, Hong Tiang</creatorcontrib><creatorcontrib>Suzuki, Yudai</creatorcontrib><creatorcontrib>Holmes, Zoë</creatorcontrib><creatorcontrib>Ng, Nelly H Y</creatorcontrib><title>Double-bracket quantum algorithms for quantum imaginary-time evolution</title><title>arXiv.org</title><description>Efficiently preparing approximate ground-states of large, strongly correlated systems on quantum hardware is challenging and yet nature is innately adept at this. This has motivated the study of thermodynamically inspired approaches to ground-state preparation that aim to replicate cooling processes via imaginary-time evolution. However, synthesizing quantum circuits that efficiently implement imaginary-time evolution is itself difficult, with prior proposals generally adopting heuristic variational approaches or using deep block encodings. Here, we use the insight that quantum imaginary-time evolution is a solution of Brockett's double-bracket flow and synthesize circuits that implement double-bracket flows coherently on the quantum computer. We prove that our Double-Bracket Quantum Imaginary-Time Evolution (DB-QITE) algorithm inherits the cooling guarantees of imaginary-time evolution. Concretely, each step is guaranteed to i) decrease the energy of an initial approximate ground-state by an amount proportion to the energy fluctuations of the initial state and ii) increase the fidelity with the ground-state. Thus DB-QITE provides a means to systematically improve the approximation of a ground-state using shallow circuits.</description><subject>Brackets</subject><subject>Circuits</subject><subject>Evolutionary algorithms</subject><subject>Quantum computers</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgO5NfPXi0ewH1JJa2pSZ7NR_D2uhDXrgZmZoUKLgQjreR8g8oYZ0oprxteVaJA3RHyYDUZgrredcJLVj5lh5WdIJh0cxGPEH7aODUZr8KLJOM01k-wORnwO7QelY26_HKL9t3pcjiTR4Al65j6GXLwn9QLJrloZFsz8d_1Bj3qPFY</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Gluza, Marek</creator><creator>Son, Jeongrak</creator><creator>Bi, Hong Tiang</creator><creator>Suzuki, Yudai</creator><creator>Holmes, Zoë</creator><creator>Ng, Nelly H Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>Double-bracket quantum algorithms for quantum imaginary-time evolution</title><author>Gluza, Marek ; Son, Jeongrak ; Bi, Hong Tiang ; Suzuki, Yudai ; Holmes, Zoë ; Ng, Nelly H Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31423748613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brackets</topic><topic>Circuits</topic><topic>Evolutionary algorithms</topic><topic>Quantum computers</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gluza, Marek</creatorcontrib><creatorcontrib>Son, Jeongrak</creatorcontrib><creatorcontrib>Bi, Hong Tiang</creatorcontrib><creatorcontrib>Suzuki, Yudai</creatorcontrib><creatorcontrib>Holmes, Zoë</creatorcontrib><creatorcontrib>Ng, Nelly H Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gluza, Marek</au><au>Son, Jeongrak</au><au>Bi, Hong Tiang</au><au>Suzuki, Yudai</au><au>Holmes, Zoë</au><au>Ng, Nelly H Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Double-bracket quantum algorithms for quantum imaginary-time evolution</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Efficiently preparing approximate ground-states of large, strongly correlated systems on quantum hardware is challenging and yet nature is innately adept at this. This has motivated the study of thermodynamically inspired approaches to ground-state preparation that aim to replicate cooling processes via imaginary-time evolution. However, synthesizing quantum circuits that efficiently implement imaginary-time evolution is itself difficult, with prior proposals generally adopting heuristic variational approaches or using deep block encodings. Here, we use the insight that quantum imaginary-time evolution is a solution of Brockett's double-bracket flow and synthesize circuits that implement double-bracket flows coherently on the quantum computer. We prove that our Double-Bracket Quantum Imaginary-Time Evolution (DB-QITE) algorithm inherits the cooling guarantees of imaginary-time evolution. Concretely, each step is guaranteed to i) decrease the energy of an initial approximate ground-state by an amount proportion to the energy fluctuations of the initial state and ii) increase the fidelity with the ground-state. Thus DB-QITE provides a means to systematically improve the approximation of a ground-state using shallow circuits.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3142374861 |
source | Free E- Journals |
subjects | Brackets Circuits Evolutionary algorithms Quantum computers Synthesis |
title | Double-bracket quantum algorithms for quantum imaginary-time evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Double-bracket%20quantum%20algorithms%20for%20quantum%20imaginary-time%20evolution&rft.jtitle=arXiv.org&rft.au=Gluza,%20Marek&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142374861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142374861&rft_id=info:pmid/&rfr_iscdi=true |