Engineering qubit dynamics in open systems with photonic synthetic lattices

The evolution of a quantum system interacting with an environment can be described as a unitary process acting on both the system and the environment. In this framework, the system's evolution can be predicted by tracing out the environmental degrees of freedom. Here, we establish a precise map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Francesco Di Colandrea, Jaouni, Tareq, Grace, John, Paneru, Dilip, Arienzo, Mirko, D'Errico, Alessio, Karimi, Ebrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Francesco Di Colandrea
Jaouni, Tareq
Grace, John
Paneru, Dilip
Arienzo, Mirko
D'Errico, Alessio
Karimi, Ebrahim
description The evolution of a quantum system interacting with an environment can be described as a unitary process acting on both the system and the environment. In this framework, the system's evolution can be predicted by tracing out the environmental degrees of freedom. Here, we establish a precise mapping between the global unitary dynamics and the quantum operation involving the system, wherein the system is a single qubit, and the environment is modeled as a discrete lattice space. This approach enables the implementation of arbitrary noise operations on single-polarization qubits using a minimal set of three liquid-crystal metasurfaces, whose transverse distribution of the optic axes can be patterned to reproduce the target process. We experimentally validate this method by simulating common noise processes, such as phase errors and depolarization.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142374229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142374229</sourcerecordid><originalsourceid>FETCH-proquest_journals_31423742293</originalsourceid><addsrcrecordid>eNqNjsEKgkAURYcgSMp_GGgt2IxmrcMI2rYXs5c-0TfqexL-fbPoA1qdyz13cVcqMNYeolNizEaFzG0cx-aYmTS1gbrnVCMBTEi1Hucnin4tVPZYsUbSbgDSvLBAz_qD0uihceIIK9-SNCA-daV4AO_U-l12DOGPW7W_5o_LLRomN87AUrRunsirwh4SYzP_6Gz_W30Bhc0-Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142374229</pqid></control><display><type>article</type><title>Engineering qubit dynamics in open systems with photonic synthetic lattices</title><source>Free E- Journals</source><creator>Francesco Di Colandrea ; Jaouni, Tareq ; Grace, John ; Paneru, Dilip ; Arienzo, Mirko ; D'Errico, Alessio ; Karimi, Ebrahim</creator><creatorcontrib>Francesco Di Colandrea ; Jaouni, Tareq ; Grace, John ; Paneru, Dilip ; Arienzo, Mirko ; D'Errico, Alessio ; Karimi, Ebrahim</creatorcontrib><description>The evolution of a quantum system interacting with an environment can be described as a unitary process acting on both the system and the environment. In this framework, the system's evolution can be predicted by tracing out the environmental degrees of freedom. Here, we establish a precise mapping between the global unitary dynamics and the quantum operation involving the system, wherein the system is a single qubit, and the environment is modeled as a discrete lattice space. This approach enables the implementation of arbitrary noise operations on single-polarization qubits using a minimal set of three liquid-crystal metasurfaces, whose transverse distribution of the optic axes can be patterned to reproduce the target process. We experimentally validate this method by simulating common noise processes, such as phase errors and depolarization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crystal lattices ; Depolarization ; Noise prediction ; Open systems ; Photonic crystals ; Quantum theory ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Francesco Di Colandrea</creatorcontrib><creatorcontrib>Jaouni, Tareq</creatorcontrib><creatorcontrib>Grace, John</creatorcontrib><creatorcontrib>Paneru, Dilip</creatorcontrib><creatorcontrib>Arienzo, Mirko</creatorcontrib><creatorcontrib>D'Errico, Alessio</creatorcontrib><creatorcontrib>Karimi, Ebrahim</creatorcontrib><title>Engineering qubit dynamics in open systems with photonic synthetic lattices</title><title>arXiv.org</title><description>The evolution of a quantum system interacting with an environment can be described as a unitary process acting on both the system and the environment. In this framework, the system's evolution can be predicted by tracing out the environmental degrees of freedom. Here, we establish a precise mapping between the global unitary dynamics and the quantum operation involving the system, wherein the system is a single qubit, and the environment is modeled as a discrete lattice space. This approach enables the implementation of arbitrary noise operations on single-polarization qubits using a minimal set of three liquid-crystal metasurfaces, whose transverse distribution of the optic axes can be patterned to reproduce the target process. We experimentally validate this method by simulating common noise processes, such as phase errors and depolarization.</description><subject>Crystal lattices</subject><subject>Depolarization</subject><subject>Noise prediction</subject><subject>Open systems</subject><subject>Photonic crystals</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsEKgkAURYcgSMp_GGgt2IxmrcMI2rYXs5c-0TfqexL-fbPoA1qdyz13cVcqMNYeolNizEaFzG0cx-aYmTS1gbrnVCMBTEi1Hucnin4tVPZYsUbSbgDSvLBAz_qD0uihceIIK9-SNCA-daV4AO_U-l12DOGPW7W_5o_LLRomN87AUrRunsirwh4SYzP_6Gz_W30Bhc0-Fw</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Francesco Di Colandrea</creator><creator>Jaouni, Tareq</creator><creator>Grace, John</creator><creator>Paneru, Dilip</creator><creator>Arienzo, Mirko</creator><creator>D'Errico, Alessio</creator><creator>Karimi, Ebrahim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241206</creationdate><title>Engineering qubit dynamics in open systems with photonic synthetic lattices</title><author>Francesco Di Colandrea ; Jaouni, Tareq ; Grace, John ; Paneru, Dilip ; Arienzo, Mirko ; D'Errico, Alessio ; Karimi, Ebrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31423742293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal lattices</topic><topic>Depolarization</topic><topic>Noise prediction</topic><topic>Open systems</topic><topic>Photonic crystals</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Francesco Di Colandrea</creatorcontrib><creatorcontrib>Jaouni, Tareq</creatorcontrib><creatorcontrib>Grace, John</creatorcontrib><creatorcontrib>Paneru, Dilip</creatorcontrib><creatorcontrib>Arienzo, Mirko</creatorcontrib><creatorcontrib>D'Errico, Alessio</creatorcontrib><creatorcontrib>Karimi, Ebrahim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francesco Di Colandrea</au><au>Jaouni, Tareq</au><au>Grace, John</au><au>Paneru, Dilip</au><au>Arienzo, Mirko</au><au>D'Errico, Alessio</au><au>Karimi, Ebrahim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Engineering qubit dynamics in open systems with photonic synthetic lattices</atitle><jtitle>arXiv.org</jtitle><date>2024-12-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The evolution of a quantum system interacting with an environment can be described as a unitary process acting on both the system and the environment. In this framework, the system's evolution can be predicted by tracing out the environmental degrees of freedom. Here, we establish a precise mapping between the global unitary dynamics and the quantum operation involving the system, wherein the system is a single qubit, and the environment is modeled as a discrete lattice space. This approach enables the implementation of arbitrary noise operations on single-polarization qubits using a minimal set of three liquid-crystal metasurfaces, whose transverse distribution of the optic axes can be patterned to reproduce the target process. We experimentally validate this method by simulating common noise processes, such as phase errors and depolarization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3142374229
source Free E- Journals
subjects Crystal lattices
Depolarization
Noise prediction
Open systems
Photonic crystals
Quantum theory
Qubits (quantum computing)
title Engineering qubit dynamics in open systems with photonic synthetic lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Engineering%20qubit%20dynamics%20in%20open%20systems%20with%20photonic%20synthetic%20lattices&rft.jtitle=arXiv.org&rft.au=Francesco%20Di%20Colandrea&rft.date=2024-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142374229%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142374229&rft_id=info:pmid/&rfr_iscdi=true