Critical Drift for Brownian Bees and a Reflected Brownian Motion Invariance Principle

\(N\)-Brownian bees is a branching-selection particle system in \(\mathbb{R}^d\) in which \(N\) particles behave as independent binary branching Brownian motions, and where at each branching event, we remove the particle furthest from the origin. We study a variant in which \(d=1\) and particles hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
1. Verfasser: Mercer, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mercer, Jacob
description \(N\)-Brownian bees is a branching-selection particle system in \(\mathbb{R}^d\) in which \(N\) particles behave as independent binary branching Brownian motions, and where at each branching event, we remove the particle furthest from the origin. We study a variant in which \(d=1\) and particles have an additional drift \(\mu\in\mathbb{R}\). We show that there is a critical value, \(\mu_c^N\), and three distinct regimes (sub-critical, critical, and super-critical) and we describe the behaviour of the system in each case. In the sub-critical regime, the system is positive Harris recurrent and has an invariant distribution; in the super-critical regime, the system is transient; and in the critical case, after rescaling, the system behaves like a single reflected Brownian motion. We also show that the critical drift \(\mu_c^N\) is in fact the speed of the well-studied \(N\)-BBM process, and give a rigorous proof for the speed of \(N\)-BBM, which was missing in the literature.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142374176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142374176</sourcerecordid><originalsourceid>FETCH-proquest_journals_31423741763</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMgWLT_4YFzoU364dyq6CCI6FxC-gIpJakvqf59OwiuTsdxt2ARFyJLdjnnKxZ736dpysuKF4WI2KMhE4ySA-zJ6ADaEdTk3tZICzWiB2k7kHBDPaAK2P3qxQXjLJztS9LsCuFKxiozDrhhSy0Hj_GXa7Y9Hu7NKRnJPSf0oe3dRHZOrchyLqo8q0rx3_UBXyxALg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142374176</pqid></control><display><type>article</type><title>Critical Drift for Brownian Bees and a Reflected Brownian Motion Invariance Principle</title><source>Free E- Journals</source><creator>Mercer, Jacob</creator><creatorcontrib>Mercer, Jacob</creatorcontrib><description>\(N\)-Brownian bees is a branching-selection particle system in \(\mathbb{R}^d\) in which \(N\) particles behave as independent binary branching Brownian motions, and where at each branching event, we remove the particle furthest from the origin. We study a variant in which \(d=1\) and particles have an additional drift \(\mu\in\mathbb{R}\). We show that there is a critical value, \(\mu_c^N\), and three distinct regimes (sub-critical, critical, and super-critical) and we describe the behaviour of the system in each case. In the sub-critical regime, the system is positive Harris recurrent and has an invariant distribution; in the super-critical regime, the system is transient; and in the critical case, after rescaling, the system behaves like a single reflected Brownian motion. We also show that the critical drift \(\mu_c^N\) is in fact the speed of the well-studied \(N\)-BBM process, and give a rigorous proof for the speed of \(N\)-BBM, which was missing in the literature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Drift ; Rescaling</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mercer, Jacob</creatorcontrib><title>Critical Drift for Brownian Bees and a Reflected Brownian Motion Invariance Principle</title><title>arXiv.org</title><description>\(N\)-Brownian bees is a branching-selection particle system in \(\mathbb{R}^d\) in which \(N\) particles behave as independent binary branching Brownian motions, and where at each branching event, we remove the particle furthest from the origin. We study a variant in which \(d=1\) and particles have an additional drift \(\mu\in\mathbb{R}\). We show that there is a critical value, \(\mu_c^N\), and three distinct regimes (sub-critical, critical, and super-critical) and we describe the behaviour of the system in each case. In the sub-critical regime, the system is positive Harris recurrent and has an invariant distribution; in the super-critical regime, the system is transient; and in the critical case, after rescaling, the system behaves like a single reflected Brownian motion. We also show that the critical drift \(\mu_c^N\) is in fact the speed of the well-studied \(N\)-BBM process, and give a rigorous proof for the speed of \(N\)-BBM, which was missing in the literature.</description><subject>Brownian motion</subject><subject>Drift</subject><subject>Rescaling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNij0LwjAUAIMgWLT_4YFzoU364dyq6CCI6FxC-gIpJakvqf59OwiuTsdxt2ARFyJLdjnnKxZ736dpysuKF4WI2KMhE4ySA-zJ6ADaEdTk3tZICzWiB2k7kHBDPaAK2P3qxQXjLJztS9LsCuFKxiozDrhhSy0Hj_GXa7Y9Hu7NKRnJPSf0oe3dRHZOrchyLqo8q0rx3_UBXyxALg</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Mercer, Jacob</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>Critical Drift for Brownian Bees and a Reflected Brownian Motion Invariance Principle</title><author>Mercer, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31423741763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brownian motion</topic><topic>Drift</topic><topic>Rescaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Mercer, Jacob</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mercer, Jacob</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Critical Drift for Brownian Bees and a Reflected Brownian Motion Invariance Principle</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>\(N\)-Brownian bees is a branching-selection particle system in \(\mathbb{R}^d\) in which \(N\) particles behave as independent binary branching Brownian motions, and where at each branching event, we remove the particle furthest from the origin. We study a variant in which \(d=1\) and particles have an additional drift \(\mu\in\mathbb{R}\). We show that there is a critical value, \(\mu_c^N\), and three distinct regimes (sub-critical, critical, and super-critical) and we describe the behaviour of the system in each case. In the sub-critical regime, the system is positive Harris recurrent and has an invariant distribution; in the super-critical regime, the system is transient; and in the critical case, after rescaling, the system behaves like a single reflected Brownian motion. We also show that the critical drift \(\mu_c^N\) is in fact the speed of the well-studied \(N\)-BBM process, and give a rigorous proof for the speed of \(N\)-BBM, which was missing in the literature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3142374176
source Free E- Journals
subjects Brownian motion
Drift
Rescaling
title Critical Drift for Brownian Bees and a Reflected Brownian Motion Invariance Principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Critical%20Drift%20for%20Brownian%20Bees%20and%20a%20Reflected%20Brownian%20Motion%20Invariance%20Principle&rft.jtitle=arXiv.org&rft.au=Mercer,%20Jacob&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142374176%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142374176&rft_id=info:pmid/&rfr_iscdi=true