Quantum-Enhanced Multi-Parameter Sensing in a Single Mode
Precision metrology underpins scientific and technological advancements. Quantum metrology offers a pathway to surpass classical sensing limits by leveraging quantum states and measurement strategies. However, measuring multiple incompatible observables suffers from quantum backaction, where measure...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Valahu, Christophe H Stafford, Matthew P Huang, Zixin Matsos, Vassili G Millican, Maverick J Chalermpusitarak, Teerawat Menicucci, Nicolas C Combes, Joshua Baragiola, Ben Q Ting Rei Tan |
description | Precision metrology underpins scientific and technological advancements. Quantum metrology offers a pathway to surpass classical sensing limits by leveraging quantum states and measurement strategies. However, measuring multiple incompatible observables suffers from quantum backaction, where measurement of one observable pollutes a subsequent measurement of the other. This is a manifestation of Heisenberg's uncertainty principle for two non-commuting observables, such as position and momentum. Here, we demonstrate measurements of small changes in position and momentum where the uncertainties are simultaneously reduced below the standard quantum limit (SQL). We measure \(\textit{modular observables}\) using tailored, highly non-classical states that ideally evade measurement backactions. The states are deterministically prepared in the single mode of the mechanical motion of a trapped ion using an optimal quantum control protocol. Our experiment uses grid states to measure small changes in position and momentum and shows a metrological gain of up to 5.1(5)~dB over the simultaneous SQL. Using an adaptive-phase estimation algorithm with Bayesian inference, we estimate these displacements with a combined variance of 2.6(1.1)~dB below the SQL. Furthermore, we examine simultaneously estimating \(\textit{number}\) and \(\textit{phase}\), which are the polar counterparts of position and momentum. This is performed by preparing a novel quantum resource -- number-phase states -- and we demonstrate a metrological gain over their SQL. The combination of quantum control and multi-parameter quantum metrology marks a significant step towards unprecedented precision with applications ranging from fundamental physics to advanced quantum technologies. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142374083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142374083</sourcerecordid><originalsourceid>FETCH-proquest_journals_31423740833</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGg9MM7VtHUYbYTC9jLorZTxTs3j_3PRB7Q6B85ZsUQBZKLKldqw1PtJSqkOpSoKSNjxFjWFOIuaXpp6HHgTTRjFVTs9Y0DHWyQ_0pOPxDVvFzPIGzvgjq0f2nhMf9yy_bm-ny7i7ewnog_dZKOjJXWQ5QrKXFYA_11fQO81wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142374083</pqid></control><display><type>article</type><title>Quantum-Enhanced Multi-Parameter Sensing in a Single Mode</title><source>Free E- Journals</source><creator>Valahu, Christophe H ; Stafford, Matthew P ; Huang, Zixin ; Matsos, Vassili G ; Millican, Maverick J ; Chalermpusitarak, Teerawat ; Menicucci, Nicolas C ; Combes, Joshua ; Baragiola, Ben Q ; Ting Rei Tan</creator><creatorcontrib>Valahu, Christophe H ; Stafford, Matthew P ; Huang, Zixin ; Matsos, Vassili G ; Millican, Maverick J ; Chalermpusitarak, Teerawat ; Menicucci, Nicolas C ; Combes, Joshua ; Baragiola, Ben Q ; Ting Rei Tan</creatorcontrib><description>Precision metrology underpins scientific and technological advancements. Quantum metrology offers a pathway to surpass classical sensing limits by leveraging quantum states and measurement strategies. However, measuring multiple incompatible observables suffers from quantum backaction, where measurement of one observable pollutes a subsequent measurement of the other. This is a manifestation of Heisenberg's uncertainty principle for two non-commuting observables, such as position and momentum. Here, we demonstrate measurements of small changes in position and momentum where the uncertainties are simultaneously reduced below the standard quantum limit (SQL). We measure \(\textit{modular observables}\) using tailored, highly non-classical states that ideally evade measurement backactions. The states are deterministically prepared in the single mode of the mechanical motion of a trapped ion using an optimal quantum control protocol. Our experiment uses grid states to measure small changes in position and momentum and shows a metrological gain of up to 5.1(5)~dB over the simultaneous SQL. Using an adaptive-phase estimation algorithm with Bayesian inference, we estimate these displacements with a combined variance of 2.6(1.1)~dB below the SQL. Furthermore, we examine simultaneously estimating \(\textit{number}\) and \(\textit{phase}\), which are the polar counterparts of position and momentum. This is performed by preparing a novel quantum resource -- number-phase states -- and we demonstrate a metrological gain over their SQL. The combination of quantum control and multi-parameter quantum metrology marks a significant step towards unprecedented precision with applications ranging from fundamental physics to advanced quantum technologies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive algorithms ; Adaptive control ; Bayesian analysis ; Estimation ; Metrology ; Momentum ; Parameters ; Position measurement ; Query languages ; Statistical inference ; Uncertainty principles</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Valahu, Christophe H</creatorcontrib><creatorcontrib>Stafford, Matthew P</creatorcontrib><creatorcontrib>Huang, Zixin</creatorcontrib><creatorcontrib>Matsos, Vassili G</creatorcontrib><creatorcontrib>Millican, Maverick J</creatorcontrib><creatorcontrib>Chalermpusitarak, Teerawat</creatorcontrib><creatorcontrib>Menicucci, Nicolas C</creatorcontrib><creatorcontrib>Combes, Joshua</creatorcontrib><creatorcontrib>Baragiola, Ben Q</creatorcontrib><creatorcontrib>Ting Rei Tan</creatorcontrib><title>Quantum-Enhanced Multi-Parameter Sensing in a Single Mode</title><title>arXiv.org</title><description>Precision metrology underpins scientific and technological advancements. Quantum metrology offers a pathway to surpass classical sensing limits by leveraging quantum states and measurement strategies. However, measuring multiple incompatible observables suffers from quantum backaction, where measurement of one observable pollutes a subsequent measurement of the other. This is a manifestation of Heisenberg's uncertainty principle for two non-commuting observables, such as position and momentum. Here, we demonstrate measurements of small changes in position and momentum where the uncertainties are simultaneously reduced below the standard quantum limit (SQL). We measure \(\textit{modular observables}\) using tailored, highly non-classical states that ideally evade measurement backactions. The states are deterministically prepared in the single mode of the mechanical motion of a trapped ion using an optimal quantum control protocol. Our experiment uses grid states to measure small changes in position and momentum and shows a metrological gain of up to 5.1(5)~dB over the simultaneous SQL. Using an adaptive-phase estimation algorithm with Bayesian inference, we estimate these displacements with a combined variance of 2.6(1.1)~dB below the SQL. Furthermore, we examine simultaneously estimating \(\textit{number}\) and \(\textit{phase}\), which are the polar counterparts of position and momentum. This is performed by preparing a novel quantum resource -- number-phase states -- and we demonstrate a metrological gain over their SQL. The combination of quantum control and multi-parameter quantum metrology marks a significant step towards unprecedented precision with applications ranging from fundamental physics to advanced quantum technologies.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Bayesian analysis</subject><subject>Estimation</subject><subject>Metrology</subject><subject>Momentum</subject><subject>Parameters</subject><subject>Position measurement</subject><subject>Query languages</subject><subject>Statistical inference</subject><subject>Uncertainty principles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGg9MM7VtHUYbYTC9jLorZTxTs3j_3PRB7Q6B85ZsUQBZKLKldqw1PtJSqkOpSoKSNjxFjWFOIuaXpp6HHgTTRjFVTs9Y0DHWyQ_0pOPxDVvFzPIGzvgjq0f2nhMf9yy_bm-ny7i7ewnog_dZKOjJXWQ5QrKXFYA_11fQO81wQ</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Valahu, Christophe H</creator><creator>Stafford, Matthew P</creator><creator>Huang, Zixin</creator><creator>Matsos, Vassili G</creator><creator>Millican, Maverick J</creator><creator>Chalermpusitarak, Teerawat</creator><creator>Menicucci, Nicolas C</creator><creator>Combes, Joshua</creator><creator>Baragiola, Ben Q</creator><creator>Ting Rei Tan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241206</creationdate><title>Quantum-Enhanced Multi-Parameter Sensing in a Single Mode</title><author>Valahu, Christophe H ; Stafford, Matthew P ; Huang, Zixin ; Matsos, Vassili G ; Millican, Maverick J ; Chalermpusitarak, Teerawat ; Menicucci, Nicolas C ; Combes, Joshua ; Baragiola, Ben Q ; Ting Rei Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31423740833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Bayesian analysis</topic><topic>Estimation</topic><topic>Metrology</topic><topic>Momentum</topic><topic>Parameters</topic><topic>Position measurement</topic><topic>Query languages</topic><topic>Statistical inference</topic><topic>Uncertainty principles</topic><toplevel>online_resources</toplevel><creatorcontrib>Valahu, Christophe H</creatorcontrib><creatorcontrib>Stafford, Matthew P</creatorcontrib><creatorcontrib>Huang, Zixin</creatorcontrib><creatorcontrib>Matsos, Vassili G</creatorcontrib><creatorcontrib>Millican, Maverick J</creatorcontrib><creatorcontrib>Chalermpusitarak, Teerawat</creatorcontrib><creatorcontrib>Menicucci, Nicolas C</creatorcontrib><creatorcontrib>Combes, Joshua</creatorcontrib><creatorcontrib>Baragiola, Ben Q</creatorcontrib><creatorcontrib>Ting Rei Tan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valahu, Christophe H</au><au>Stafford, Matthew P</au><au>Huang, Zixin</au><au>Matsos, Vassili G</au><au>Millican, Maverick J</au><au>Chalermpusitarak, Teerawat</au><au>Menicucci, Nicolas C</au><au>Combes, Joshua</au><au>Baragiola, Ben Q</au><au>Ting Rei Tan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum-Enhanced Multi-Parameter Sensing in a Single Mode</atitle><jtitle>arXiv.org</jtitle><date>2024-12-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Precision metrology underpins scientific and technological advancements. Quantum metrology offers a pathway to surpass classical sensing limits by leveraging quantum states and measurement strategies. However, measuring multiple incompatible observables suffers from quantum backaction, where measurement of one observable pollutes a subsequent measurement of the other. This is a manifestation of Heisenberg's uncertainty principle for two non-commuting observables, such as position and momentum. Here, we demonstrate measurements of small changes in position and momentum where the uncertainties are simultaneously reduced below the standard quantum limit (SQL). We measure \(\textit{modular observables}\) using tailored, highly non-classical states that ideally evade measurement backactions. The states are deterministically prepared in the single mode of the mechanical motion of a trapped ion using an optimal quantum control protocol. Our experiment uses grid states to measure small changes in position and momentum and shows a metrological gain of up to 5.1(5)~dB over the simultaneous SQL. Using an adaptive-phase estimation algorithm with Bayesian inference, we estimate these displacements with a combined variance of 2.6(1.1)~dB below the SQL. Furthermore, we examine simultaneously estimating \(\textit{number}\) and \(\textit{phase}\), which are the polar counterparts of position and momentum. This is performed by preparing a novel quantum resource -- number-phase states -- and we demonstrate a metrological gain over their SQL. The combination of quantum control and multi-parameter quantum metrology marks a significant step towards unprecedented precision with applications ranging from fundamental physics to advanced quantum technologies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3142374083 |
source | Free E- Journals |
subjects | Adaptive algorithms Adaptive control Bayesian analysis Estimation Metrology Momentum Parameters Position measurement Query languages Statistical inference Uncertainty principles |
title | Quantum-Enhanced Multi-Parameter Sensing in a Single Mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum-Enhanced%20Multi-Parameter%20Sensing%20in%20a%20Single%20Mode&rft.jtitle=arXiv.org&rft.au=Valahu,%20Christophe%20H&rft.date=2024-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142374083%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142374083&rft_id=info:pmid/&rfr_iscdi=true |