A linear independence criterion for certain infinite series with polynomial orders

Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
1. Verfasser: Kudo, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kudo, Shinya
description Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditions. In this paper, we investigate linear independence over \(\mathbb{Q}(q)\) of the numbers \begin{equation*} 1,\qquad \sum_{n=1}^{\infty} \frac{a_j (n)}{q^{f_j (n)}} \quad (j=1,2,\dots). \end{equation*} In particular, when \(a_j(n)\) \((j=1,2,\dots)\) are polynomials of \(n\), we give a linear independence criterion for the above numbers.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142373834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142373834</sourcerecordid><originalsourceid>FETCH-proquest_journals_31423738343</originalsourceid><addsrcrecordid>eNqNysEKgkAQxvElCJLyHQY6C7qr6TWi6BzdRXSkkW3WZleit28PPUCX7zv8_iuVaGOKrCm13qjU-ynPc32odVWZRN2OYImxEyAecMY43CP0QgGFHMPoBHqU0BHHZCSOAD4aenhTeMDs7IfdkzoLTgYUv1PrsbMe099v1f5yvp-u2SzutaAP7eQW4UitKUptatOY0vxXfQE-xEBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142373834</pqid></control><display><type>article</type><title>A linear independence criterion for certain infinite series with polynomial orders</title><source>Free E- Journals</source><creator>Kudo, Shinya</creator><creatorcontrib>Kudo, Shinya</creatorcontrib><description>Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditions. In this paper, we investigate linear independence over \(\mathbb{Q}(q)\) of the numbers \begin{equation*} 1,\qquad \sum_{n=1}^{\infty} \frac{a_j (n)}{q^{f_j (n)}} \quad (j=1,2,\dots). \end{equation*} In particular, when \(a_j(n)\) \((j=1,2,\dots)\) are polynomials of \(n\), we give a linear independence criterion for the above numbers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Criteria ; Infinite series ; Polynomials ; Sequences</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kudo, Shinya</creatorcontrib><title>A linear independence criterion for certain infinite series with polynomial orders</title><title>arXiv.org</title><description>Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditions. In this paper, we investigate linear independence over \(\mathbb{Q}(q)\) of the numbers \begin{equation*} 1,\qquad \sum_{n=1}^{\infty} \frac{a_j (n)}{q^{f_j (n)}} \quad (j=1,2,\dots). \end{equation*} In particular, when \(a_j(n)\) \((j=1,2,\dots)\) are polynomials of \(n\), we give a linear independence criterion for the above numbers.</description><subject>Criteria</subject><subject>Infinite series</subject><subject>Polynomials</subject><subject>Sequences</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEKgkAQxvElCJLyHQY6C7qr6TWi6BzdRXSkkW3WZleit28PPUCX7zv8_iuVaGOKrCm13qjU-ynPc32odVWZRN2OYImxEyAecMY43CP0QgGFHMPoBHqU0BHHZCSOAD4aenhTeMDs7IfdkzoLTgYUv1PrsbMe099v1f5yvp-u2SzutaAP7eQW4UitKUptatOY0vxXfQE-xEBt</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Kudo, Shinya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241206</creationdate><title>A linear independence criterion for certain infinite series with polynomial orders</title><author>Kudo, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31423738343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Criteria</topic><topic>Infinite series</topic><topic>Polynomials</topic><topic>Sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Shinya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Shinya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A linear independence criterion for certain infinite series with polynomial orders</atitle><jtitle>arXiv.org</jtitle><date>2024-12-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditions. In this paper, we investigate linear independence over \(\mathbb{Q}(q)\) of the numbers \begin{equation*} 1,\qquad \sum_{n=1}^{\infty} \frac{a_j (n)}{q^{f_j (n)}} \quad (j=1,2,\dots). \end{equation*} In particular, when \(a_j(n)\) \((j=1,2,\dots)\) are polynomials of \(n\), we give a linear independence criterion for the above numbers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3142373834
source Free E- Journals
subjects Criteria
Infinite series
Polynomials
Sequences
title A linear independence criterion for certain infinite series with polynomial orders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20linear%20independence%20criterion%20for%20certain%20infinite%20series%20with%20polynomial%20orders&rft.jtitle=arXiv.org&rft.au=Kudo,%20Shinya&rft.date=2024-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142373834%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142373834&rft_id=info:pmid/&rfr_iscdi=true