A linear independence criterion for certain infinite series with polynomial orders
Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(q\) be a Pisot or Salem number. Let \(f_j(x)\) \((j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1}\) \((j=1,2,\dots)\) be sequences of algebraic integers in the field \(\mathbb{Q}(q)\) with suitable growth conditions. In this paper, we investigate linear independence over \(\mathbb{Q}(q)\) of the numbers \begin{equation*} 1,\qquad \sum_{n=1}^{\infty} \frac{a_j (n)}{q^{f_j (n)}} \quad (j=1,2,\dots). \end{equation*} In particular, when \(a_j(n)\) \((j=1,2,\dots)\) are polynomials of \(n\), we give a linear independence criterion for the above numbers. |
---|---|
ISSN: | 2331-8422 |