Fatigue Fracture Mechanism and Life Prediction of TA1 Titanium Alloy Clinched Joints

ABSTRACT This study investigated the fatigue fracture mechanisms and life prediction of clinched joints made from titanium alloy TA1. The fatigue tests revealed that TA1 titanium alloy clinched joints exhibited failure characterized by fracture of the lower plate at three distinct fatigue load level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2025-01, Vol.48 (1), p.132-144
Hauptverfasser: Zhang, Yue, Liao, Changhui, Wang, Tao, Xu, Changyou, Peng, Jianbiao, Lu, Yan, Lei, Bei, Jiang, Jiachuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 132
container_title Fatigue & fracture of engineering materials & structures
container_volume 48
creator Zhang, Yue
Liao, Changhui
Wang, Tao
Xu, Changyou
Peng, Jianbiao
Lu, Yan
Lei, Bei
Jiang, Jiachuan
description ABSTRACT This study investigated the fatigue fracture mechanisms and life prediction of clinched joints made from titanium alloy TA1. The fatigue tests revealed that TA1 titanium alloy clinched joints exhibited failure characterized by fracture of the lower plate at three distinct fatigue load levels. Additionally, finite element analysis indicated that cold work hardening enhanced the fatigue performance of these joints. Observations of fracture surfaces using scanning electron microscopy identified the crack source and its propagation path, which correlated with the location of maximum principal stress from the finite element simulations. Fretting wear was also observed in this critical region. Furthermore, fatigue life predictions for TA1 titanium alloy clinched joints were made using Paris' law and the local strain approach. Both methods closely matched experimental results across different fatigue life intervals. Overall, the local strain approach exhibited superior predictive capability compared to Paris' law, taking into account various influencing factors.
doi_str_mv 10.1111/ffe.14464
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142339873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142339873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1874-f0359764e8202a8698c8057ef5945dd23a43633a26d10a10a4c30647f4d00dc23</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCtbHwW8Q8ORh27w2yR5L6fqgoocVvIWQh03Z7tZkF-m3N7peHQbm8psZ-ANwg9Ec51p47-aYMc5OwAwzjgrCq_IUzKQoeSFK-X4OLlLaIYQ5o3QGmloP4WN0sI7aDGN08NmZre5C2kPdWbgJ3sHX6GwwQ-g72HvYLDFswpDNuIfLtu2PcNWGzmydhU996IZ0Bc68bpO7_puX4K1eN6uHYvNy_7habgqDpWCFR7SsBGdOEkS05JU0EpXC-bJipbWEakY5pZpwi5HOzQxFnAnPLELWEHoJbqe7h9h_ji4NatePscsvFcWMUFpJQbO6m5SJfUrReXWIYa_jUWGkfkJTOTT1G1q2i8l-hdYd_4eqrtfTxjdQDGte</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142339873</pqid></control><display><type>article</type><title>Fatigue Fracture Mechanism and Life Prediction of TA1 Titanium Alloy Clinched Joints</title><source>Access via Wiley Online Library</source><creator>Zhang, Yue ; Liao, Changhui ; Wang, Tao ; Xu, Changyou ; Peng, Jianbiao ; Lu, Yan ; Lei, Bei ; Jiang, Jiachuan</creator><creatorcontrib>Zhang, Yue ; Liao, Changhui ; Wang, Tao ; Xu, Changyou ; Peng, Jianbiao ; Lu, Yan ; Lei, Bei ; Jiang, Jiachuan</creatorcontrib><description>ABSTRACT This study investigated the fatigue fracture mechanisms and life prediction of clinched joints made from titanium alloy TA1. The fatigue tests revealed that TA1 titanium alloy clinched joints exhibited failure characterized by fracture of the lower plate at three distinct fatigue load levels. Additionally, finite element analysis indicated that cold work hardening enhanced the fatigue performance of these joints. Observations of fracture surfaces using scanning electron microscopy identified the crack source and its propagation path, which correlated with the location of maximum principal stress from the finite element simulations. Fretting wear was also observed in this critical region. Furthermore, fatigue life predictions for TA1 titanium alloy clinched joints were made using Paris' law and the local strain approach. Both methods closely matched experimental results across different fatigue life intervals. Overall, the local strain approach exhibited superior predictive capability compared to Paris' law, taking into account various influencing factors.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14464</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Alloying elements ; clinched joint ; Clinching ; Cold working ; Fatigue failure ; Fatigue life ; fatigue life estimation ; Fatigue tests ; finite element analysis ; Finite element method ; Fracture mechanics ; Fracture surfaces ; Life prediction ; Metal fatigue ; Stress propagation ; titanium alloy ; Titanium base alloys ; Work hardening</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2025-01, Vol.48 (1), p.132-144</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2025 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1874-f0359764e8202a8698c8057ef5945dd23a43633a26d10a10a4c30647f4d00dc23</cites><orcidid>0000-0002-8427-8215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14464$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14464$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liao, Changhui</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Xu, Changyou</creatorcontrib><creatorcontrib>Peng, Jianbiao</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Lei, Bei</creatorcontrib><creatorcontrib>Jiang, Jiachuan</creatorcontrib><title>Fatigue Fracture Mechanism and Life Prediction of TA1 Titanium Alloy Clinched Joints</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>ABSTRACT This study investigated the fatigue fracture mechanisms and life prediction of clinched joints made from titanium alloy TA1. The fatigue tests revealed that TA1 titanium alloy clinched joints exhibited failure characterized by fracture of the lower plate at three distinct fatigue load levels. Additionally, finite element analysis indicated that cold work hardening enhanced the fatigue performance of these joints. Observations of fracture surfaces using scanning electron microscopy identified the crack source and its propagation path, which correlated with the location of maximum principal stress from the finite element simulations. Fretting wear was also observed in this critical region. Furthermore, fatigue life predictions for TA1 titanium alloy clinched joints were made using Paris' law and the local strain approach. Both methods closely matched experimental results across different fatigue life intervals. Overall, the local strain approach exhibited superior predictive capability compared to Paris' law, taking into account various influencing factors.</description><subject>Alloying elements</subject><subject>clinched joint</subject><subject>Clinching</subject><subject>Cold working</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>fatigue life estimation</subject><subject>Fatigue tests</subject><subject>finite element analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Life prediction</subject><subject>Metal fatigue</subject><subject>Stress propagation</subject><subject>titanium alloy</subject><subject>Titanium base alloys</subject><subject>Work hardening</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCtbHwW8Q8ORh27w2yR5L6fqgoocVvIWQh03Z7tZkF-m3N7peHQbm8psZ-ANwg9Ec51p47-aYMc5OwAwzjgrCq_IUzKQoeSFK-X4OLlLaIYQ5o3QGmloP4WN0sI7aDGN08NmZre5C2kPdWbgJ3sHX6GwwQ-g72HvYLDFswpDNuIfLtu2PcNWGzmydhU996IZ0Bc68bpO7_puX4K1eN6uHYvNy_7habgqDpWCFR7SsBGdOEkS05JU0EpXC-bJipbWEakY5pZpwi5HOzQxFnAnPLELWEHoJbqe7h9h_ji4NatePscsvFcWMUFpJQbO6m5SJfUrReXWIYa_jUWGkfkJTOTT1G1q2i8l-hdYd_4eqrtfTxjdQDGte</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Zhang, Yue</creator><creator>Liao, Changhui</creator><creator>Wang, Tao</creator><creator>Xu, Changyou</creator><creator>Peng, Jianbiao</creator><creator>Lu, Yan</creator><creator>Lei, Bei</creator><creator>Jiang, Jiachuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8427-8215</orcidid></search><sort><creationdate>202501</creationdate><title>Fatigue Fracture Mechanism and Life Prediction of TA1 Titanium Alloy Clinched Joints</title><author>Zhang, Yue ; Liao, Changhui ; Wang, Tao ; Xu, Changyou ; Peng, Jianbiao ; Lu, Yan ; Lei, Bei ; Jiang, Jiachuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1874-f0359764e8202a8698c8057ef5945dd23a43633a26d10a10a4c30647f4d00dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alloying elements</topic><topic>clinched joint</topic><topic>Clinching</topic><topic>Cold working</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>fatigue life estimation</topic><topic>Fatigue tests</topic><topic>finite element analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Life prediction</topic><topic>Metal fatigue</topic><topic>Stress propagation</topic><topic>titanium alloy</topic><topic>Titanium base alloys</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liao, Changhui</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Xu, Changyou</creatorcontrib><creatorcontrib>Peng, Jianbiao</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Lei, Bei</creatorcontrib><creatorcontrib>Jiang, Jiachuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yue</au><au>Liao, Changhui</au><au>Wang, Tao</au><au>Xu, Changyou</au><au>Peng, Jianbiao</au><au>Lu, Yan</au><au>Lei, Bei</au><au>Jiang, Jiachuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Fracture Mechanism and Life Prediction of TA1 Titanium Alloy Clinched Joints</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2025-01</date><risdate>2025</risdate><volume>48</volume><issue>1</issue><spage>132</spage><epage>144</epage><pages>132-144</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>ABSTRACT This study investigated the fatigue fracture mechanisms and life prediction of clinched joints made from titanium alloy TA1. The fatigue tests revealed that TA1 titanium alloy clinched joints exhibited failure characterized by fracture of the lower plate at three distinct fatigue load levels. Additionally, finite element analysis indicated that cold work hardening enhanced the fatigue performance of these joints. Observations of fracture surfaces using scanning electron microscopy identified the crack source and its propagation path, which correlated with the location of maximum principal stress from the finite element simulations. Fretting wear was also observed in this critical region. Furthermore, fatigue life predictions for TA1 titanium alloy clinched joints were made using Paris' law and the local strain approach. Both methods closely matched experimental results across different fatigue life intervals. Overall, the local strain approach exhibited superior predictive capability compared to Paris' law, taking into account various influencing factors.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14464</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8427-8215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2025-01, Vol.48 (1), p.132-144
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_3142339873
source Access via Wiley Online Library
subjects Alloying elements
clinched joint
Clinching
Cold working
Fatigue failure
Fatigue life
fatigue life estimation
Fatigue tests
finite element analysis
Finite element method
Fracture mechanics
Fracture surfaces
Life prediction
Metal fatigue
Stress propagation
titanium alloy
Titanium base alloys
Work hardening
title Fatigue Fracture Mechanism and Life Prediction of TA1 Titanium Alloy Clinched Joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Fracture%20Mechanism%20and%20Life%20Prediction%20of%20TA1%20Titanium%20Alloy%20Clinched%20Joints&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Zhang,%20Yue&rft.date=2025-01&rft.volume=48&rft.issue=1&rft.spage=132&rft.epage=144&rft.pages=132-144&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14464&rft_dat=%3Cproquest_cross%3E3142339873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142339873&rft_id=info:pmid/&rfr_iscdi=true