Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells
Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silic...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2024-10, Vol.16 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | ChemCatChem |
container_volume | 16 |
creator | Santos Pereira, Fellipe Anchieta e Silva, Felipe Azevedo Silva, Augusto César Jesus Gomes Varela Júnior, Jaldyr Mateus Pinatti, Ivo Rojas, Alex Mantilla, Angeles Alcântara, Ana C. S. Baraldi Dourado, Andre Henrique Tofanello, Aryane Atsushi Tanaka, Auro Silva Rodrigues, Thenner Suller Garcia, Marco Aurélio |
description | Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst.
This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting. |
doi_str_mv | 10.1002/cctc.202400944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142272434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142272434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-5b678d28c8ee66d03403cca621f9893b9886f7d320f2da33fd9c231690fec5323</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZR2JdVrHTh17WUXlR6ooKqVb446d1lVIQpwIsuMInJGTkChQlqzmjeZ7M6OH0GWARwHGZAxQwYhgEmIswvAIDQLOIp9yIY4PmuNTdObcHmMmaDQZoOdZtlMZGO0t3putybyl0TVUNu-U6sXaqt_pWkFLN18fn0sLO-_RphZU2z3WRZGXVbtmuh0_aO9eZbnbmTR15-gkUakzFz91iJ6uZ6v41p8vbu7i6dyH7mV_smER14QDN4YxjWmIKYBiJEgEF3QjOGdJpCnBCdGK0kQLIDRgAicGJpTQIbrq9xZl_lobV8l9XpdZe1LSICQkIiENW2rUU1DmzpUmkUVpX1TZyADLLkXZpSgPKbYG0RvebGqaf2gZx6v4z_sNaW93xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142272434</pqid></control><display><type>article</type><title>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</title><source>Access via Wiley Online Library</source><creator>Santos Pereira, Fellipe ; Anchieta e Silva, Felipe ; Azevedo Silva, Augusto César ; Jesus Gomes Varela Júnior, Jaldyr ; Mateus Pinatti, Ivo ; Rojas, Alex ; Mantilla, Angeles ; Alcântara, Ana C. S. ; Baraldi Dourado, Andre Henrique ; Tofanello, Aryane ; Atsushi Tanaka, Auro ; Silva Rodrigues, Thenner ; Suller Garcia, Marco Aurélio</creator><creatorcontrib>Santos Pereira, Fellipe ; Anchieta e Silva, Felipe ; Azevedo Silva, Augusto César ; Jesus Gomes Varela Júnior, Jaldyr ; Mateus Pinatti, Ivo ; Rojas, Alex ; Mantilla, Angeles ; Alcântara, Ana C. S. ; Baraldi Dourado, Andre Henrique ; Tofanello, Aryane ; Atsushi Tanaka, Auro ; Silva Rodrigues, Thenner ; Suller Garcia, Marco Aurélio</creatorcontrib><description>Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst.
This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202400944</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AgPd nanoshells ; Catalysts ; Chemical reduction ; Chemical synthesis ; Electrochemical impedance spectroscopy ; Electron paramagnetic resonance ; EPR ; Hydrogen production ; Oxygen reduction reaction ; Oxygen reduction reactions ; Oxygen vacancies creation ; Palladium ; Photochemical reactions ; Photochemical water-splitting ; Silica ; Silicon dioxide ; Silver ; Titanium dioxide ; Water splitting</subject><ispartof>ChemCatChem, 2024-10, Vol.16 (23), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-5b678d28c8ee66d03403cca621f9893b9886f7d320f2da33fd9c231690fec5323</cites><orcidid>0000-0003-3290-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202400944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202400944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Santos Pereira, Fellipe</creatorcontrib><creatorcontrib>Anchieta e Silva, Felipe</creatorcontrib><creatorcontrib>Azevedo Silva, Augusto César</creatorcontrib><creatorcontrib>Jesus Gomes Varela Júnior, Jaldyr</creatorcontrib><creatorcontrib>Mateus Pinatti, Ivo</creatorcontrib><creatorcontrib>Rojas, Alex</creatorcontrib><creatorcontrib>Mantilla, Angeles</creatorcontrib><creatorcontrib>Alcântara, Ana C. S.</creatorcontrib><creatorcontrib>Baraldi Dourado, Andre Henrique</creatorcontrib><creatorcontrib>Tofanello, Aryane</creatorcontrib><creatorcontrib>Atsushi Tanaka, Auro</creatorcontrib><creatorcontrib>Silva Rodrigues, Thenner</creatorcontrib><creatorcontrib>Suller Garcia, Marco Aurélio</creatorcontrib><title>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</title><title>ChemCatChem</title><description>Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst.
This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.</description><subject>AgPd nanoshells</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electron paramagnetic resonance</subject><subject>EPR</subject><subject>Hydrogen production</subject><subject>Oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Oxygen vacancies creation</subject><subject>Palladium</subject><subject>Photochemical reactions</subject><subject>Photochemical water-splitting</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Titanium dioxide</subject><subject>Water splitting</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZR2JdVrHTh17WUXlR6ooKqVb446d1lVIQpwIsuMInJGTkChQlqzmjeZ7M6OH0GWARwHGZAxQwYhgEmIswvAIDQLOIp9yIY4PmuNTdObcHmMmaDQZoOdZtlMZGO0t3putybyl0TVUNu-U6sXaqt_pWkFLN18fn0sLO-_RphZU2z3WRZGXVbtmuh0_aO9eZbnbmTR15-gkUakzFz91iJ6uZ6v41p8vbu7i6dyH7mV_smER14QDN4YxjWmIKYBiJEgEF3QjOGdJpCnBCdGK0kQLIDRgAicGJpTQIbrq9xZl_lobV8l9XpdZe1LSICQkIiENW2rUU1DmzpUmkUVpX1TZyADLLkXZpSgPKbYG0RvebGqaf2gZx6v4z_sNaW93xw</recordid><startdate>20241019</startdate><enddate>20241019</enddate><creator>Santos Pereira, Fellipe</creator><creator>Anchieta e Silva, Felipe</creator><creator>Azevedo Silva, Augusto César</creator><creator>Jesus Gomes Varela Júnior, Jaldyr</creator><creator>Mateus Pinatti, Ivo</creator><creator>Rojas, Alex</creator><creator>Mantilla, Angeles</creator><creator>Alcântara, Ana C. S.</creator><creator>Baraldi Dourado, Andre Henrique</creator><creator>Tofanello, Aryane</creator><creator>Atsushi Tanaka, Auro</creator><creator>Silva Rodrigues, Thenner</creator><creator>Suller Garcia, Marco Aurélio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3290-9297</orcidid></search><sort><creationdate>20241019</creationdate><title>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</title><author>Santos Pereira, Fellipe ; Anchieta e Silva, Felipe ; Azevedo Silva, Augusto César ; Jesus Gomes Varela Júnior, Jaldyr ; Mateus Pinatti, Ivo ; Rojas, Alex ; Mantilla, Angeles ; Alcântara, Ana C. S. ; Baraldi Dourado, Andre Henrique ; Tofanello, Aryane ; Atsushi Tanaka, Auro ; Silva Rodrigues, Thenner ; Suller Garcia, Marco Aurélio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-5b678d28c8ee66d03403cca621f9893b9886f7d320f2da33fd9c231690fec5323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AgPd nanoshells</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electron paramagnetic resonance</topic><topic>EPR</topic><topic>Hydrogen production</topic><topic>Oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Oxygen vacancies creation</topic><topic>Palladium</topic><topic>Photochemical reactions</topic><topic>Photochemical water-splitting</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Titanium dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos Pereira, Fellipe</creatorcontrib><creatorcontrib>Anchieta e Silva, Felipe</creatorcontrib><creatorcontrib>Azevedo Silva, Augusto César</creatorcontrib><creatorcontrib>Jesus Gomes Varela Júnior, Jaldyr</creatorcontrib><creatorcontrib>Mateus Pinatti, Ivo</creatorcontrib><creatorcontrib>Rojas, Alex</creatorcontrib><creatorcontrib>Mantilla, Angeles</creatorcontrib><creatorcontrib>Alcântara, Ana C. S.</creatorcontrib><creatorcontrib>Baraldi Dourado, Andre Henrique</creatorcontrib><creatorcontrib>Tofanello, Aryane</creatorcontrib><creatorcontrib>Atsushi Tanaka, Auro</creatorcontrib><creatorcontrib>Silva Rodrigues, Thenner</creatorcontrib><creatorcontrib>Suller Garcia, Marco Aurélio</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos Pereira, Fellipe</au><au>Anchieta e Silva, Felipe</au><au>Azevedo Silva, Augusto César</au><au>Jesus Gomes Varela Júnior, Jaldyr</au><au>Mateus Pinatti, Ivo</au><au>Rojas, Alex</au><au>Mantilla, Angeles</au><au>Alcântara, Ana C. S.</au><au>Baraldi Dourado, Andre Henrique</au><au>Tofanello, Aryane</au><au>Atsushi Tanaka, Auro</au><au>Silva Rodrigues, Thenner</au><au>Suller Garcia, Marco Aurélio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</atitle><jtitle>ChemCatChem</jtitle><date>2024-10-19</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst.
This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202400944</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3290-9297</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2024-10, Vol.16 (23), p.n/a |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_3142272434 |
source | Access via Wiley Online Library |
subjects | AgPd nanoshells Catalysts Chemical reduction Chemical synthesis Electrochemical impedance spectroscopy Electron paramagnetic resonance EPR Hydrogen production Oxygen reduction reaction Oxygen reduction reactions Oxygen vacancies creation Palladium Photochemical reactions Photochemical water-splitting Silica Silicon dioxide Silver Titanium dioxide Water splitting |
title | Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Oxygen%20Reduction%20Reaction%20Via%20Oxygen%20Vacancy%E2%80%90Rich%20Silica%E2%80%90Supported%20Ag/Pd%20Nanoshells&rft.jtitle=ChemCatChem&rft.au=Santos%20Pereira,%20Fellipe&rft.date=2024-10-19&rft.volume=16&rft.issue=23&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202400944&rft_dat=%3Cproquest_cross%3E3142272434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142272434&rft_id=info:pmid/&rfr_iscdi=true |