Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells

Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2024-10, Vol.16 (23), p.n/a
Hauptverfasser: Santos Pereira, Fellipe, Anchieta e Silva, Felipe, Azevedo Silva, Augusto César, Jesus Gomes Varela Júnior, Jaldyr, Mateus Pinatti, Ivo, Rojas, Alex, Mantilla, Angeles, Alcântara, Ana C. S., Baraldi Dourado, Andre Henrique, Tofanello, Aryane, Atsushi Tanaka, Auro, Silva Rodrigues, Thenner, Suller Garcia, Marco Aurélio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title ChemCatChem
container_volume 16
creator Santos Pereira, Fellipe
Anchieta e Silva, Felipe
Azevedo Silva, Augusto César
Jesus Gomes Varela Júnior, Jaldyr
Mateus Pinatti, Ivo
Rojas, Alex
Mantilla, Angeles
Alcântara, Ana C. S.
Baraldi Dourado, Andre Henrique
Tofanello, Aryane
Atsushi Tanaka, Auro
Silva Rodrigues, Thenner
Suller Garcia, Marco Aurélio
description Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst. This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.
doi_str_mv 10.1002/cctc.202400944
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142272434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142272434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-5b678d28c8ee66d03403cca621f9893b9886f7d320f2da33fd9c231690fec5323</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZR2JdVrHTh17WUXlR6ooKqVb446d1lVIQpwIsuMInJGTkChQlqzmjeZ7M6OH0GWARwHGZAxQwYhgEmIswvAIDQLOIp9yIY4PmuNTdObcHmMmaDQZoOdZtlMZGO0t3putybyl0TVUNu-U6sXaqt_pWkFLN18fn0sLO-_RphZU2z3WRZGXVbtmuh0_aO9eZbnbmTR15-gkUakzFz91iJ6uZ6v41p8vbu7i6dyH7mV_smER14QDN4YxjWmIKYBiJEgEF3QjOGdJpCnBCdGK0kQLIDRgAicGJpTQIbrq9xZl_lobV8l9XpdZe1LSICQkIiENW2rUU1DmzpUmkUVpX1TZyADLLkXZpSgPKbYG0RvebGqaf2gZx6v4z_sNaW93xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142272434</pqid></control><display><type>article</type><title>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</title><source>Access via Wiley Online Library</source><creator>Santos Pereira, Fellipe ; Anchieta e Silva, Felipe ; Azevedo Silva, Augusto César ; Jesus Gomes Varela Júnior, Jaldyr ; Mateus Pinatti, Ivo ; Rojas, Alex ; Mantilla, Angeles ; Alcântara, Ana C. S. ; Baraldi Dourado, Andre Henrique ; Tofanello, Aryane ; Atsushi Tanaka, Auro ; Silva Rodrigues, Thenner ; Suller Garcia, Marco Aurélio</creator><creatorcontrib>Santos Pereira, Fellipe ; Anchieta e Silva, Felipe ; Azevedo Silva, Augusto César ; Jesus Gomes Varela Júnior, Jaldyr ; Mateus Pinatti, Ivo ; Rojas, Alex ; Mantilla, Angeles ; Alcântara, Ana C. S. ; Baraldi Dourado, Andre Henrique ; Tofanello, Aryane ; Atsushi Tanaka, Auro ; Silva Rodrigues, Thenner ; Suller Garcia, Marco Aurélio</creatorcontrib><description>Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst. This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202400944</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AgPd nanoshells ; Catalysts ; Chemical reduction ; Chemical synthesis ; Electrochemical impedance spectroscopy ; Electron paramagnetic resonance ; EPR ; Hydrogen production ; Oxygen reduction reaction ; Oxygen reduction reactions ; Oxygen vacancies creation ; Palladium ; Photochemical reactions ; Photochemical water-splitting ; Silica ; Silicon dioxide ; Silver ; Titanium dioxide ; Water splitting</subject><ispartof>ChemCatChem, 2024-10, Vol.16 (23), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-5b678d28c8ee66d03403cca621f9893b9886f7d320f2da33fd9c231690fec5323</cites><orcidid>0000-0003-3290-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202400944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202400944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Santos Pereira, Fellipe</creatorcontrib><creatorcontrib>Anchieta e Silva, Felipe</creatorcontrib><creatorcontrib>Azevedo Silva, Augusto César</creatorcontrib><creatorcontrib>Jesus Gomes Varela Júnior, Jaldyr</creatorcontrib><creatorcontrib>Mateus Pinatti, Ivo</creatorcontrib><creatorcontrib>Rojas, Alex</creatorcontrib><creatorcontrib>Mantilla, Angeles</creatorcontrib><creatorcontrib>Alcântara, Ana C. S.</creatorcontrib><creatorcontrib>Baraldi Dourado, Andre Henrique</creatorcontrib><creatorcontrib>Tofanello, Aryane</creatorcontrib><creatorcontrib>Atsushi Tanaka, Auro</creatorcontrib><creatorcontrib>Silva Rodrigues, Thenner</creatorcontrib><creatorcontrib>Suller Garcia, Marco Aurélio</creatorcontrib><title>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</title><title>ChemCatChem</title><description>Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst. This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.</description><subject>AgPd nanoshells</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electron paramagnetic resonance</subject><subject>EPR</subject><subject>Hydrogen production</subject><subject>Oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Oxygen vacancies creation</subject><subject>Palladium</subject><subject>Photochemical reactions</subject><subject>Photochemical water-splitting</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>Titanium dioxide</subject><subject>Water splitting</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZR2JdVrHTh17WUXlR6ooKqVb446d1lVIQpwIsuMInJGTkChQlqzmjeZ7M6OH0GWARwHGZAxQwYhgEmIswvAIDQLOIp9yIY4PmuNTdObcHmMmaDQZoOdZtlMZGO0t3putybyl0TVUNu-U6sXaqt_pWkFLN18fn0sLO-_RphZU2z3WRZGXVbtmuh0_aO9eZbnbmTR15-gkUakzFz91iJ6uZ6v41p8vbu7i6dyH7mV_smER14QDN4YxjWmIKYBiJEgEF3QjOGdJpCnBCdGK0kQLIDRgAicGJpTQIbrq9xZl_lobV8l9XpdZe1LSICQkIiENW2rUU1DmzpUmkUVpX1TZyADLLkXZpSgPKbYG0RvebGqaf2gZx6v4z_sNaW93xw</recordid><startdate>20241019</startdate><enddate>20241019</enddate><creator>Santos Pereira, Fellipe</creator><creator>Anchieta e Silva, Felipe</creator><creator>Azevedo Silva, Augusto César</creator><creator>Jesus Gomes Varela Júnior, Jaldyr</creator><creator>Mateus Pinatti, Ivo</creator><creator>Rojas, Alex</creator><creator>Mantilla, Angeles</creator><creator>Alcântara, Ana C. S.</creator><creator>Baraldi Dourado, Andre Henrique</creator><creator>Tofanello, Aryane</creator><creator>Atsushi Tanaka, Auro</creator><creator>Silva Rodrigues, Thenner</creator><creator>Suller Garcia, Marco Aurélio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3290-9297</orcidid></search><sort><creationdate>20241019</creationdate><title>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</title><author>Santos Pereira, Fellipe ; Anchieta e Silva, Felipe ; Azevedo Silva, Augusto César ; Jesus Gomes Varela Júnior, Jaldyr ; Mateus Pinatti, Ivo ; Rojas, Alex ; Mantilla, Angeles ; Alcântara, Ana C. S. ; Baraldi Dourado, Andre Henrique ; Tofanello, Aryane ; Atsushi Tanaka, Auro ; Silva Rodrigues, Thenner ; Suller Garcia, Marco Aurélio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-5b678d28c8ee66d03403cca621f9893b9886f7d320f2da33fd9c231690fec5323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AgPd nanoshells</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electron paramagnetic resonance</topic><topic>EPR</topic><topic>Hydrogen production</topic><topic>Oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Oxygen vacancies creation</topic><topic>Palladium</topic><topic>Photochemical reactions</topic><topic>Photochemical water-splitting</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>Titanium dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos Pereira, Fellipe</creatorcontrib><creatorcontrib>Anchieta e Silva, Felipe</creatorcontrib><creatorcontrib>Azevedo Silva, Augusto César</creatorcontrib><creatorcontrib>Jesus Gomes Varela Júnior, Jaldyr</creatorcontrib><creatorcontrib>Mateus Pinatti, Ivo</creatorcontrib><creatorcontrib>Rojas, Alex</creatorcontrib><creatorcontrib>Mantilla, Angeles</creatorcontrib><creatorcontrib>Alcântara, Ana C. S.</creatorcontrib><creatorcontrib>Baraldi Dourado, Andre Henrique</creatorcontrib><creatorcontrib>Tofanello, Aryane</creatorcontrib><creatorcontrib>Atsushi Tanaka, Auro</creatorcontrib><creatorcontrib>Silva Rodrigues, Thenner</creatorcontrib><creatorcontrib>Suller Garcia, Marco Aurélio</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos Pereira, Fellipe</au><au>Anchieta e Silva, Felipe</au><au>Azevedo Silva, Augusto César</au><au>Jesus Gomes Varela Júnior, Jaldyr</au><au>Mateus Pinatti, Ivo</au><au>Rojas, Alex</au><au>Mantilla, Angeles</au><au>Alcântara, Ana C. S.</au><au>Baraldi Dourado, Andre Henrique</au><au>Tofanello, Aryane</au><au>Atsushi Tanaka, Auro</au><au>Silva Rodrigues, Thenner</au><au>Suller Garcia, Marco Aurélio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells</atitle><jtitle>ChemCatChem</jtitle><date>2024-10-19</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Herein, we demonstrated the fine‐tuning of catalysts’ active phase by employing AgPd nanoshells with distinct Ag/Pd ratios synthesized via a galvanic replacement method for the oxygen reduction reaction (ORR). However, more interestingly, the subsequent immobilization of such Ag/Pd ratios onto silica further influenced the support characteristics, creating an increasing concentration of oxygen vacancies in this typically inert support — a surprising and unparalleled outcome attested by electrochemical impedance spectroscopy, electron paramagnetic resonance, and theoretical calculation. Such a phenomenon promoted obtaining an optimized electro/photocatalyst with exceptional activity, facilitating not just the ORR but also the photochemical water‐splitting reaction. Curiously, adjusting the Ag/Pd ratio also affected the ORR mechanism, which was switched from a 2‐electron to a 4‐electron after optimization. Finally, Ag38Pd62/SiO2, the catalyst with the best proportion, exhibited a remarkable hydrogen production rate of 1039.8 μmol/gcatalyst during 300 minutes of water splitting, surpassing the performance of the conventional Degussa TiO2 P25 catalyst. This study highlights the fine‐tuning of catalysts for the oxygen reduction reaction (ORR) by synthesizing AgPd nanoshells with varying Ag/Pd ratios through a galvanic replacement method. When these ratios were immobilized on silica, an unexpected increase in oxygen vacancies occurred, enhancing the catalyst's activity. The optimized Ag38Pd62/SiO2 catalyst also demonstrated superior hydrogen production in water‐splitting.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202400944</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3290-9297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2024-10, Vol.16 (23), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_3142272434
source Access via Wiley Online Library
subjects AgPd nanoshells
Catalysts
Chemical reduction
Chemical synthesis
Electrochemical impedance spectroscopy
Electron paramagnetic resonance
EPR
Hydrogen production
Oxygen reduction reaction
Oxygen reduction reactions
Oxygen vacancies creation
Palladium
Photochemical reactions
Photochemical water-splitting
Silica
Silicon dioxide
Silver
Titanium dioxide
Water splitting
title Enhanced Oxygen Reduction Reaction Via Oxygen Vacancy‐Rich Silica‐Supported Ag/Pd Nanoshells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Oxygen%20Reduction%20Reaction%20Via%20Oxygen%20Vacancy%E2%80%90Rich%20Silica%E2%80%90Supported%20Ag/Pd%20Nanoshells&rft.jtitle=ChemCatChem&rft.au=Santos%20Pereira,%20Fellipe&rft.date=2024-10-19&rft.volume=16&rft.issue=23&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202400944&rft_dat=%3Cproquest_cross%3E3142272434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142272434&rft_id=info:pmid/&rfr_iscdi=true