Fast Filtering with Large Option Panels: Implications for Asset Pricing

The cross section of options holds great promise for identifying return distributions and risk premia, but estimating dynamic option valuation models with latent state variables is challenging when using large option panels. We propose a particle Markov Chain Monte Carlo framework with a novel filte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of financial and quantitative analysis 2024-11, Vol.59 (7), p.3416-3447
Hauptverfasser: Dufays, Arnaud, Jacobs, Kris, Liu, Yuguo, Rombouts, Jeroen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cross section of options holds great promise for identifying return distributions and risk premia, but estimating dynamic option valuation models with latent state variables is challenging when using large option panels. We propose a particle Markov Chain Monte Carlo framework with a novel filtering approach and illustrate our method by estimating index option pricing models. Estimates of variance risk premiums, variance mean reversion, and higher moments differ from the literature. We show that these differences are due to the composition of the option sample. Restricting the option sample’s maturity dimension has the strongest impact on parameter inference and option fit in these models.
ISSN:0022-1090
1756-6916
DOI:10.1017/S0022109023000753