Multiscale modelling of biopolymers

This review overviews common biopolymer modelling approaches ranging from chemically specific to highly coarse-grained techniques, along with their application ranges, strengths and limitations. Recent modelling applications at each modelling scale are outlined and discussed. The focus is on modelli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in physics: X 2024-12, Vol.9 (1)
Hauptverfasser: Scacchi, A., Vuorte, M., Sammalkorpi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Advances in physics: X
container_volume 9
creator Scacchi, A.
Vuorte, M.
Sammalkorpi, M.
description This review overviews common biopolymer modelling approaches ranging from chemically specific to highly coarse-grained techniques, along with their application ranges, strengths and limitations. Recent modelling applications at each modelling scale are outlined and discussed. The focus is on modelling of protein and peptide, nucleic acid and saccharide-based biopolymer systems, excluding lignocellulose materials. The survey focuses on physics-based models. We cover particle-based simulations methods, including all-atom and coarse-grained molecular dynamics (MD), dissipative particle dynamics (DPD) and Langevin and Brownian dynamics (BD) approaches. While these methods capture molecular and particle-level dynamics, a brief overview of also stochastic sampling approaches (Monte Carlo methods) to physics-based models, as well as free energy functional-based methods, i.e. field theory approaches, such as self-consistent field theory (SCFT) and classical density functional theory (cDFT), are provided.
doi_str_mv 10.1080/23746149.2024.2358196
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_3141722018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff952c6b49bf4949864f5b3452f8f0ee</doaj_id><sourcerecordid>3141722018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-6281d534b202e6bab8fccd4344630ef2ef054498e6e56b888711828c80bf2d953</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLQ_QSj03JrvTW5K8aNQ8aLnkGSTkpLd1GSL9N-761bx5GmGmXmfd3gBuEFwiaCAt5hUlCMqlxhiusSECST5GZgM88WwOP_TX4JpKTsIIeJVLyYTMH85xC4Uq6ObNal2MYZ2O0t-ZkLap3hsXC7X4MLrWNz0VK_A--PD2-p5sXl9Wq_uNwtLsOwWHAtUM0JN_4njRhvhra0poZQT6Dx2HjJKpXDcMW6EEBVCAgsroPG4loxcgfXIrZPeqX0Ojc5HlXRQ34OUt0rnLtjolPeSYcsNlcZT2UM59cwQyrAXHjrXs-Yja5_Tx8GVTu3SIbf9-4ogiiqMIRL9FRuvbE6lZOd_XRFUQ7zqJ141xKtO8fa6u1EXWp9yoz9TjrXq9DGm7LNubRhs_kV8AQuNfmQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141722018</pqid></control><display><type>article</type><title>Multiscale modelling of biopolymers</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Scacchi, A. ; Vuorte, M. ; Sammalkorpi, M.</creator><creatorcontrib>Scacchi, A. ; Vuorte, M. ; Sammalkorpi, M.</creatorcontrib><description>This review overviews common biopolymer modelling approaches ranging from chemically specific to highly coarse-grained techniques, along with their application ranges, strengths and limitations. Recent modelling applications at each modelling scale are outlined and discussed. The focus is on modelling of protein and peptide, nucleic acid and saccharide-based biopolymer systems, excluding lignocellulose materials. The survey focuses on physics-based models. We cover particle-based simulations methods, including all-atom and coarse-grained molecular dynamics (MD), dissipative particle dynamics (DPD) and Langevin and Brownian dynamics (BD) approaches. While these methods capture molecular and particle-level dynamics, a brief overview of also stochastic sampling approaches (Monte Carlo methods) to physics-based models, as well as free energy functional-based methods, i.e. field theory approaches, such as self-consistent field theory (SCFT) and classical density functional theory (cDFT), are provided.</description><identifier>ISSN: 2374-6149</identifier><identifier>EISSN: 2374-6149</identifier><identifier>DOI: 10.1080/23746149.2024.2358196</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Amino acids ; Bioengineering ; Biopolymer modelling ; Biopolymers ; Carbohydrates ; Chemical bonds ; Chemistry ; Composite materials ; Density functional theory ; Field theory ; Free energy ; Lignocellulose ; Materials science ; Medical equipment ; Modelling ; Molecular dynamics ; Monte Carlo simulation ; Nucleic acids ; Peptides ; Physics ; physics-based models ; Polyesters ; Polymer blends ; polymer materials modelling ; Proteins ; Self consistent fields</subject><ispartof>Advances in physics: X, 2024-12, Vol.9 (1)</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-6281d534b202e6bab8fccd4344630ef2ef054498e6e56b888711828c80bf2d953</cites><orcidid>0000-0001-9652-8608 ; 0000-0003-4606-5400 ; 0000-0002-9248-430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23746149.2024.2358196$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23746149.2024.2358196$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Scacchi, A.</creatorcontrib><creatorcontrib>Vuorte, M.</creatorcontrib><creatorcontrib>Sammalkorpi, M.</creatorcontrib><title>Multiscale modelling of biopolymers</title><title>Advances in physics: X</title><description>This review overviews common biopolymer modelling approaches ranging from chemically specific to highly coarse-grained techniques, along with their application ranges, strengths and limitations. Recent modelling applications at each modelling scale are outlined and discussed. The focus is on modelling of protein and peptide, nucleic acid and saccharide-based biopolymer systems, excluding lignocellulose materials. The survey focuses on physics-based models. We cover particle-based simulations methods, including all-atom and coarse-grained molecular dynamics (MD), dissipative particle dynamics (DPD) and Langevin and Brownian dynamics (BD) approaches. While these methods capture molecular and particle-level dynamics, a brief overview of also stochastic sampling approaches (Monte Carlo methods) to physics-based models, as well as free energy functional-based methods, i.e. field theory approaches, such as self-consistent field theory (SCFT) and classical density functional theory (cDFT), are provided.</description><subject>Amino acids</subject><subject>Bioengineering</subject><subject>Biopolymer modelling</subject><subject>Biopolymers</subject><subject>Carbohydrates</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Composite materials</subject><subject>Density functional theory</subject><subject>Field theory</subject><subject>Free energy</subject><subject>Lignocellulose</subject><subject>Materials science</subject><subject>Medical equipment</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Monte Carlo simulation</subject><subject>Nucleic acids</subject><subject>Peptides</subject><subject>Physics</subject><subject>physics-based models</subject><subject>Polyesters</subject><subject>Polymer blends</subject><subject>polymer materials modelling</subject><subject>Proteins</subject><subject>Self consistent fields</subject><issn>2374-6149</issn><issn>2374-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWLQ_QSj03JrvTW5K8aNQ8aLnkGSTkpLd1GSL9N-761bx5GmGmXmfd3gBuEFwiaCAt5hUlCMqlxhiusSECST5GZgM88WwOP_TX4JpKTsIIeJVLyYTMH85xC4Uq6ObNal2MYZ2O0t-ZkLap3hsXC7X4MLrWNz0VK_A--PD2-p5sXl9Wq_uNwtLsOwWHAtUM0JN_4njRhvhra0poZQT6Dx2HjJKpXDcMW6EEBVCAgsroPG4loxcgfXIrZPeqX0Ojc5HlXRQ34OUt0rnLtjolPeSYcsNlcZT2UM59cwQyrAXHjrXs-Yja5_Tx8GVTu3SIbf9-4ogiiqMIRL9FRuvbE6lZOd_XRFUQ7zqJ141xKtO8fa6u1EXWp9yoz9TjrXq9DGm7LNubRhs_kV8AQuNfmQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Scacchi, A.</creator><creator>Vuorte, M.</creator><creator>Sammalkorpi, M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9652-8608</orcidid><orcidid>https://orcid.org/0000-0003-4606-5400</orcidid><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid></search><sort><creationdate>20241231</creationdate><title>Multiscale modelling of biopolymers</title><author>Scacchi, A. ; Vuorte, M. ; Sammalkorpi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-6281d534b202e6bab8fccd4344630ef2ef054498e6e56b888711828c80bf2d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Bioengineering</topic><topic>Biopolymer modelling</topic><topic>Biopolymers</topic><topic>Carbohydrates</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Composite materials</topic><topic>Density functional theory</topic><topic>Field theory</topic><topic>Free energy</topic><topic>Lignocellulose</topic><topic>Materials science</topic><topic>Medical equipment</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Monte Carlo simulation</topic><topic>Nucleic acids</topic><topic>Peptides</topic><topic>Physics</topic><topic>physics-based models</topic><topic>Polyesters</topic><topic>Polymer blends</topic><topic>polymer materials modelling</topic><topic>Proteins</topic><topic>Self consistent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scacchi, A.</creatorcontrib><creatorcontrib>Vuorte, M.</creatorcontrib><creatorcontrib>Sammalkorpi, M.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in physics: X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scacchi, A.</au><au>Vuorte, M.</au><au>Sammalkorpi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modelling of biopolymers</atitle><jtitle>Advances in physics: X</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><issn>2374-6149</issn><eissn>2374-6149</eissn><abstract>This review overviews common biopolymer modelling approaches ranging from chemically specific to highly coarse-grained techniques, along with their application ranges, strengths and limitations. Recent modelling applications at each modelling scale are outlined and discussed. The focus is on modelling of protein and peptide, nucleic acid and saccharide-based biopolymer systems, excluding lignocellulose materials. The survey focuses on physics-based models. We cover particle-based simulations methods, including all-atom and coarse-grained molecular dynamics (MD), dissipative particle dynamics (DPD) and Langevin and Brownian dynamics (BD) approaches. While these methods capture molecular and particle-level dynamics, a brief overview of also stochastic sampling approaches (Monte Carlo methods) to physics-based models, as well as free energy functional-based methods, i.e. field theory approaches, such as self-consistent field theory (SCFT) and classical density functional theory (cDFT), are provided.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/23746149.2024.2358196</doi><orcidid>https://orcid.org/0000-0001-9652-8608</orcidid><orcidid>https://orcid.org/0000-0003-4606-5400</orcidid><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-6149
ispartof Advances in physics: X, 2024-12, Vol.9 (1)
issn 2374-6149
2374-6149
language eng
recordid cdi_proquest_journals_3141722018
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino acids
Bioengineering
Biopolymer modelling
Biopolymers
Carbohydrates
Chemical bonds
Chemistry
Composite materials
Density functional theory
Field theory
Free energy
Lignocellulose
Materials science
Medical equipment
Modelling
Molecular dynamics
Monte Carlo simulation
Nucleic acids
Peptides
Physics
physics-based models
Polyesters
Polymer blends
polymer materials modelling
Proteins
Self consistent fields
title Multiscale modelling of biopolymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modelling%20of%20biopolymers&rft.jtitle=Advances%20in%20physics:%20X&rft.au=Scacchi,%20A.&rft.date=2024-12-31&rft.volume=9&rft.issue=1&rft.issn=2374-6149&rft.eissn=2374-6149&rft_id=info:doi/10.1080/23746149.2024.2358196&rft_dat=%3Cproquest_infor%3E3141722018%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141722018&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ff952c6b49bf4949864f5b3452f8f0ee&rfr_iscdi=true