Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction
The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab s...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2024-12, Vol.17 (12), p.1306-1315 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1315 |
---|---|
container_issue | 12 |
container_start_page | 1306 |
container_title | Nature geoscience |
container_volume | 17 |
creator | Lamont, Thomas N. Loader, Matthew A. Roberts, Nick M. W. Cooper, Frances J. Wilkinson, Jamie J. Bevan, Dan Gorecki, Adam Kemp, Anthony Elliott, Tim Gardiner, Nicholas J. Tapster, Simon |
description | The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting.
Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study. |
doi_str_mv | 10.1038/s41561-024-01575-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141689042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141689042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c61de3fb5d82eefaf97c066622f3cddd39578fe298f222ad427ecff2d7c441f23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19HkNn0tZfAFA7rQnRDSPLRDp603jdp_79Qq7lydszjnXO5HyKng54InxUWQIs0E4yAZF2meMtgjC5GnwHjJi_1fX5TykByFsOE84zJPF-T5ocP-dcSRmq7vHVLf4VYPdddSi_W7a2k10g89OGS-iZ_OUoMxDLqhW9cMdftCbcRJfKMHFhpd0RArG800cUwOvG6CO_nRJXm6vnpc3bL1_c3d6nLNDEg5MJMJ6xJfpbYA57z2ZW54lmUAPjHW2qRM88I7KAsPANpKyJ3xHmxupBQekiU5m3d77N6iC4PadBHb3UmVCCmyouRySsGcMtiFgM6rHuutxlEJriaKaqaodhTVN0U1lZK5FPrpTYd_0_-0vgB_9Xd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141689042</pqid></control><display><type>article</type><title>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lamont, Thomas N. ; Loader, Matthew A. ; Roberts, Nick M. W. ; Cooper, Frances J. ; Wilkinson, Jamie J. ; Bevan, Dan ; Gorecki, Adam ; Kemp, Anthony ; Elliott, Tim ; Gardiner, Nicholas J. ; Tapster, Simon</creator><creatorcontrib>Lamont, Thomas N. ; Loader, Matthew A. ; Roberts, Nick M. W. ; Cooper, Frances J. ; Wilkinson, Jamie J. ; Bevan, Dan ; Gorecki, Adam ; Kemp, Anthony ; Elliott, Tim ; Gardiner, Nicholas J. ; Tapster, Simon</creatorcontrib><description>The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting.
Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-024-01575-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/213/4115 ; 704/2151/330 ; 704/2151/431 ; 704/2151/562 ; Arc deposition ; Boundaries ; Copper ; Copper converters ; Copper ores ; Cretaceous ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Electric arc melting ; Fluids ; Geochemistry ; Geochronology ; Geochronometry ; Geology ; Geophysics/Geodesy ; Heavy metals ; Magma ; Melting ; Metallogenesis ; Palaeocene ; Paleocene ; Plate boundaries ; Porphyry copper ; Precambrian ; Subduction ; Subduction (geology) ; Subduction zones ; Volatiles</subject><ispartof>Nature geoscience, 2024-12, Vol.17 (12), p.1306-1315</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Nature Publishing Group Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c61de3fb5d82eefaf97c066622f3cddd39578fe298f222ad427ecff2d7c441f23</cites><orcidid>0000-0003-1642-0360 ; 0000-0003-2294-6027 ; 0000-0001-6382-8778 ; 0000-0002-0984-0191 ; 0000-0001-9049-0485 ; 0000-0003-3465-9295 ; 0000-0001-8272-5432 ; 0000-0002-7706-6003 ; 0000-0003-2485-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-024-01575-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-024-01575-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lamont, Thomas N.</creatorcontrib><creatorcontrib>Loader, Matthew A.</creatorcontrib><creatorcontrib>Roberts, Nick M. W.</creatorcontrib><creatorcontrib>Cooper, Frances J.</creatorcontrib><creatorcontrib>Wilkinson, Jamie J.</creatorcontrib><creatorcontrib>Bevan, Dan</creatorcontrib><creatorcontrib>Gorecki, Adam</creatorcontrib><creatorcontrib>Kemp, Anthony</creatorcontrib><creatorcontrib>Elliott, Tim</creatorcontrib><creatorcontrib>Gardiner, Nicholas J.</creatorcontrib><creatorcontrib>Tapster, Simon</creatorcontrib><title>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting.
Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.</description><subject>704/2151/213/4115</subject><subject>704/2151/330</subject><subject>704/2151/431</subject><subject>704/2151/562</subject><subject>Arc deposition</subject><subject>Boundaries</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Copper ores</subject><subject>Cretaceous</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Electric arc melting</subject><subject>Fluids</subject><subject>Geochemistry</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heavy metals</subject><subject>Magma</subject><subject>Melting</subject><subject>Metallogenesis</subject><subject>Palaeocene</subject><subject>Paleocene</subject><subject>Plate boundaries</subject><subject>Porphyry copper</subject><subject>Precambrian</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Volatiles</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19HkNn0tZfAFA7rQnRDSPLRDp603jdp_79Qq7lydszjnXO5HyKng54InxUWQIs0E4yAZF2meMtgjC5GnwHjJi_1fX5TykByFsOE84zJPF-T5ocP-dcSRmq7vHVLf4VYPdddSi_W7a2k10g89OGS-iZ_OUoMxDLqhW9cMdftCbcRJfKMHFhpd0RArG800cUwOvG6CO_nRJXm6vnpc3bL1_c3d6nLNDEg5MJMJ6xJfpbYA57z2ZW54lmUAPjHW2qRM88I7KAsPANpKyJ3xHmxupBQekiU5m3d77N6iC4PadBHb3UmVCCmyouRySsGcMtiFgM6rHuutxlEJriaKaqaodhTVN0U1lZK5FPrpTYd_0_-0vgB_9Xd0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Lamont, Thomas N.</creator><creator>Loader, Matthew A.</creator><creator>Roberts, Nick M. W.</creator><creator>Cooper, Frances J.</creator><creator>Wilkinson, Jamie J.</creator><creator>Bevan, Dan</creator><creator>Gorecki, Adam</creator><creator>Kemp, Anthony</creator><creator>Elliott, Tim</creator><creator>Gardiner, Nicholas J.</creator><creator>Tapster, Simon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-1642-0360</orcidid><orcidid>https://orcid.org/0000-0003-2294-6027</orcidid><orcidid>https://orcid.org/0000-0001-6382-8778</orcidid><orcidid>https://orcid.org/0000-0002-0984-0191</orcidid><orcidid>https://orcid.org/0000-0001-9049-0485</orcidid><orcidid>https://orcid.org/0000-0003-3465-9295</orcidid><orcidid>https://orcid.org/0000-0001-8272-5432</orcidid><orcidid>https://orcid.org/0000-0002-7706-6003</orcidid><orcidid>https://orcid.org/0000-0003-2485-672X</orcidid></search><sort><creationdate>20241201</creationdate><title>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</title><author>Lamont, Thomas N. ; Loader, Matthew A. ; Roberts, Nick M. W. ; Cooper, Frances J. ; Wilkinson, Jamie J. ; Bevan, Dan ; Gorecki, Adam ; Kemp, Anthony ; Elliott, Tim ; Gardiner, Nicholas J. ; Tapster, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c61de3fb5d82eefaf97c066622f3cddd39578fe298f222ad427ecff2d7c441f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>704/2151/213/4115</topic><topic>704/2151/330</topic><topic>704/2151/431</topic><topic>704/2151/562</topic><topic>Arc deposition</topic><topic>Boundaries</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Copper ores</topic><topic>Cretaceous</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Electric arc melting</topic><topic>Fluids</topic><topic>Geochemistry</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heavy metals</topic><topic>Magma</topic><topic>Melting</topic><topic>Metallogenesis</topic><topic>Palaeocene</topic><topic>Paleocene</topic><topic>Plate boundaries</topic><topic>Porphyry copper</topic><topic>Precambrian</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamont, Thomas N.</creatorcontrib><creatorcontrib>Loader, Matthew A.</creatorcontrib><creatorcontrib>Roberts, Nick M. W.</creatorcontrib><creatorcontrib>Cooper, Frances J.</creatorcontrib><creatorcontrib>Wilkinson, Jamie J.</creatorcontrib><creatorcontrib>Bevan, Dan</creatorcontrib><creatorcontrib>Gorecki, Adam</creatorcontrib><creatorcontrib>Kemp, Anthony</creatorcontrib><creatorcontrib>Elliott, Tim</creatorcontrib><creatorcontrib>Gardiner, Nicholas J.</creatorcontrib><creatorcontrib>Tapster, Simon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamont, Thomas N.</au><au>Loader, Matthew A.</au><au>Roberts, Nick M. W.</au><au>Cooper, Frances J.</au><au>Wilkinson, Jamie J.</au><au>Bevan, Dan</au><au>Gorecki, Adam</au><au>Kemp, Anthony</au><au>Elliott, Tim</au><au>Gardiner, Nicholas J.</au><au>Tapster, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>17</volume><issue>12</issue><spage>1306</spage><epage>1315</epage><pages>1306-1315</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting.
Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-024-01575-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1642-0360</orcidid><orcidid>https://orcid.org/0000-0003-2294-6027</orcidid><orcidid>https://orcid.org/0000-0001-6382-8778</orcidid><orcidid>https://orcid.org/0000-0002-0984-0191</orcidid><orcidid>https://orcid.org/0000-0001-9049-0485</orcidid><orcidid>https://orcid.org/0000-0003-3465-9295</orcidid><orcidid>https://orcid.org/0000-0001-8272-5432</orcidid><orcidid>https://orcid.org/0000-0002-7706-6003</orcidid><orcidid>https://orcid.org/0000-0003-2485-672X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2024-12, Vol.17 (12), p.1306-1315 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_3141689042 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 704/2151/213/4115 704/2151/330 704/2151/431 704/2151/562 Arc deposition Boundaries Copper Copper converters Copper ores Cretaceous Earth and Environmental Science Earth Sciences Earth System Sciences Electric arc melting Fluids Geochemistry Geochronology Geochronometry Geology Geophysics/Geodesy Heavy metals Magma Melting Metallogenesis Palaeocene Paleocene Plate boundaries Porphyry copper Precambrian Subduction Subduction (geology) Subduction zones Volatiles |
title | Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porphyry%20copper%20formation%20driven%20by%20water-fluxed%20crustal%20melting%20during%20flat-slab%20subduction&rft.jtitle=Nature%20geoscience&rft.au=Lamont,%20Thomas%20N.&rft.date=2024-12-01&rft.volume=17&rft.issue=12&rft.spage=1306&rft.epage=1315&rft.pages=1306-1315&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-024-01575-2&rft_dat=%3Cproquest_cross%3E3141689042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141689042&rft_id=info:pmid/&rfr_iscdi=true |