Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction

The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2024-12, Vol.17 (12), p.1306-1315
Hauptverfasser: Lamont, Thomas N., Loader, Matthew A., Roberts, Nick M. W., Cooper, Frances J., Wilkinson, Jamie J., Bevan, Dan, Gorecki, Adam, Kemp, Anthony, Elliott, Tim, Gardiner, Nicholas J., Tapster, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1315
container_issue 12
container_start_page 1306
container_title Nature geoscience
container_volume 17
creator Lamont, Thomas N.
Loader, Matthew A.
Roberts, Nick M. W.
Cooper, Frances J.
Wilkinson, Jamie J.
Bevan, Dan
Gorecki, Adam
Kemp, Anthony
Elliott, Tim
Gardiner, Nicholas J.
Tapster, Simon
description The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting. Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.
doi_str_mv 10.1038/s41561-024-01575-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141689042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141689042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c61de3fb5d82eefaf97c066622f3cddd39578fe298f222ad427ecff2d7c441f23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19HkNn0tZfAFA7rQnRDSPLRDp603jdp_79Qq7lydszjnXO5HyKng54InxUWQIs0E4yAZF2meMtgjC5GnwHjJi_1fX5TykByFsOE84zJPF-T5ocP-dcSRmq7vHVLf4VYPdddSi_W7a2k10g89OGS-iZ_OUoMxDLqhW9cMdftCbcRJfKMHFhpd0RArG800cUwOvG6CO_nRJXm6vnpc3bL1_c3d6nLNDEg5MJMJ6xJfpbYA57z2ZW54lmUAPjHW2qRM88I7KAsPANpKyJ3xHmxupBQekiU5m3d77N6iC4PadBHb3UmVCCmyouRySsGcMtiFgM6rHuutxlEJriaKaqaodhTVN0U1lZK5FPrpTYd_0_-0vgB_9Xd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141689042</pqid></control><display><type>article</type><title>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lamont, Thomas N. ; Loader, Matthew A. ; Roberts, Nick M. W. ; Cooper, Frances J. ; Wilkinson, Jamie J. ; Bevan, Dan ; Gorecki, Adam ; Kemp, Anthony ; Elliott, Tim ; Gardiner, Nicholas J. ; Tapster, Simon</creator><creatorcontrib>Lamont, Thomas N. ; Loader, Matthew A. ; Roberts, Nick M. W. ; Cooper, Frances J. ; Wilkinson, Jamie J. ; Bevan, Dan ; Gorecki, Adam ; Kemp, Anthony ; Elliott, Tim ; Gardiner, Nicholas J. ; Tapster, Simon</creatorcontrib><description>The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting. Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-024-01575-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/213/4115 ; 704/2151/330 ; 704/2151/431 ; 704/2151/562 ; Arc deposition ; Boundaries ; Copper ; Copper converters ; Copper ores ; Cretaceous ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Electric arc melting ; Fluids ; Geochemistry ; Geochronology ; Geochronometry ; Geology ; Geophysics/Geodesy ; Heavy metals ; Magma ; Melting ; Metallogenesis ; Palaeocene ; Paleocene ; Plate boundaries ; Porphyry copper ; Precambrian ; Subduction ; Subduction (geology) ; Subduction zones ; Volatiles</subject><ispartof>Nature geoscience, 2024-12, Vol.17 (12), p.1306-1315</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Nature Publishing Group Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c61de3fb5d82eefaf97c066622f3cddd39578fe298f222ad427ecff2d7c441f23</cites><orcidid>0000-0003-1642-0360 ; 0000-0003-2294-6027 ; 0000-0001-6382-8778 ; 0000-0002-0984-0191 ; 0000-0001-9049-0485 ; 0000-0003-3465-9295 ; 0000-0001-8272-5432 ; 0000-0002-7706-6003 ; 0000-0003-2485-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-024-01575-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-024-01575-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lamont, Thomas N.</creatorcontrib><creatorcontrib>Loader, Matthew A.</creatorcontrib><creatorcontrib>Roberts, Nick M. W.</creatorcontrib><creatorcontrib>Cooper, Frances J.</creatorcontrib><creatorcontrib>Wilkinson, Jamie J.</creatorcontrib><creatorcontrib>Bevan, Dan</creatorcontrib><creatorcontrib>Gorecki, Adam</creatorcontrib><creatorcontrib>Kemp, Anthony</creatorcontrib><creatorcontrib>Elliott, Tim</creatorcontrib><creatorcontrib>Gardiner, Nicholas J.</creatorcontrib><creatorcontrib>Tapster, Simon</creatorcontrib><title>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting. Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.</description><subject>704/2151/213/4115</subject><subject>704/2151/330</subject><subject>704/2151/431</subject><subject>704/2151/562</subject><subject>Arc deposition</subject><subject>Boundaries</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Copper ores</subject><subject>Cretaceous</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Electric arc melting</subject><subject>Fluids</subject><subject>Geochemistry</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heavy metals</subject><subject>Magma</subject><subject>Melting</subject><subject>Metallogenesis</subject><subject>Palaeocene</subject><subject>Paleocene</subject><subject>Plate boundaries</subject><subject>Porphyry copper</subject><subject>Precambrian</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Volatiles</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19HkNn0tZfAFA7rQnRDSPLRDp603jdp_79Qq7lydszjnXO5HyKng54InxUWQIs0E4yAZF2meMtgjC5GnwHjJi_1fX5TykByFsOE84zJPF-T5ocP-dcSRmq7vHVLf4VYPdddSi_W7a2k10g89OGS-iZ_OUoMxDLqhW9cMdftCbcRJfKMHFhpd0RArG800cUwOvG6CO_nRJXm6vnpc3bL1_c3d6nLNDEg5MJMJ6xJfpbYA57z2ZW54lmUAPjHW2qRM88I7KAsPANpKyJ3xHmxupBQekiU5m3d77N6iC4PadBHb3UmVCCmyouRySsGcMtiFgM6rHuutxlEJriaKaqaodhTVN0U1lZK5FPrpTYd_0_-0vgB_9Xd0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Lamont, Thomas N.</creator><creator>Loader, Matthew A.</creator><creator>Roberts, Nick M. W.</creator><creator>Cooper, Frances J.</creator><creator>Wilkinson, Jamie J.</creator><creator>Bevan, Dan</creator><creator>Gorecki, Adam</creator><creator>Kemp, Anthony</creator><creator>Elliott, Tim</creator><creator>Gardiner, Nicholas J.</creator><creator>Tapster, Simon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-1642-0360</orcidid><orcidid>https://orcid.org/0000-0003-2294-6027</orcidid><orcidid>https://orcid.org/0000-0001-6382-8778</orcidid><orcidid>https://orcid.org/0000-0002-0984-0191</orcidid><orcidid>https://orcid.org/0000-0001-9049-0485</orcidid><orcidid>https://orcid.org/0000-0003-3465-9295</orcidid><orcidid>https://orcid.org/0000-0001-8272-5432</orcidid><orcidid>https://orcid.org/0000-0002-7706-6003</orcidid><orcidid>https://orcid.org/0000-0003-2485-672X</orcidid></search><sort><creationdate>20241201</creationdate><title>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</title><author>Lamont, Thomas N. ; Loader, Matthew A. ; Roberts, Nick M. W. ; Cooper, Frances J. ; Wilkinson, Jamie J. ; Bevan, Dan ; Gorecki, Adam ; Kemp, Anthony ; Elliott, Tim ; Gardiner, Nicholas J. ; Tapster, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c61de3fb5d82eefaf97c066622f3cddd39578fe298f222ad427ecff2d7c441f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>704/2151/213/4115</topic><topic>704/2151/330</topic><topic>704/2151/431</topic><topic>704/2151/562</topic><topic>Arc deposition</topic><topic>Boundaries</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Copper ores</topic><topic>Cretaceous</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Electric arc melting</topic><topic>Fluids</topic><topic>Geochemistry</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heavy metals</topic><topic>Magma</topic><topic>Melting</topic><topic>Metallogenesis</topic><topic>Palaeocene</topic><topic>Paleocene</topic><topic>Plate boundaries</topic><topic>Porphyry copper</topic><topic>Precambrian</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamont, Thomas N.</creatorcontrib><creatorcontrib>Loader, Matthew A.</creatorcontrib><creatorcontrib>Roberts, Nick M. W.</creatorcontrib><creatorcontrib>Cooper, Frances J.</creatorcontrib><creatorcontrib>Wilkinson, Jamie J.</creatorcontrib><creatorcontrib>Bevan, Dan</creatorcontrib><creatorcontrib>Gorecki, Adam</creatorcontrib><creatorcontrib>Kemp, Anthony</creatorcontrib><creatorcontrib>Elliott, Tim</creatorcontrib><creatorcontrib>Gardiner, Nicholas J.</creatorcontrib><creatorcontrib>Tapster, Simon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamont, Thomas N.</au><au>Loader, Matthew A.</au><au>Roberts, Nick M. W.</au><au>Cooper, Frances J.</au><au>Wilkinson, Jamie J.</au><au>Bevan, Dan</au><au>Gorecki, Adam</au><au>Kemp, Anthony</au><au>Elliott, Tim</au><au>Gardiner, Nicholas J.</au><au>Tapster, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>17</volume><issue>12</issue><spage>1306</spage><epage>1315</epage><pages>1306-1315</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting. Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-024-01575-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1642-0360</orcidid><orcidid>https://orcid.org/0000-0003-2294-6027</orcidid><orcidid>https://orcid.org/0000-0001-6382-8778</orcidid><orcidid>https://orcid.org/0000-0002-0984-0191</orcidid><orcidid>https://orcid.org/0000-0001-9049-0485</orcidid><orcidid>https://orcid.org/0000-0003-3465-9295</orcidid><orcidid>https://orcid.org/0000-0001-8272-5432</orcidid><orcidid>https://orcid.org/0000-0002-7706-6003</orcidid><orcidid>https://orcid.org/0000-0003-2485-672X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2024-12, Vol.17 (12), p.1306-1315
issn 1752-0894
1752-0908
language eng
recordid cdi_proquest_journals_3141689042
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 704/2151/213/4115
704/2151/330
704/2151/431
704/2151/562
Arc deposition
Boundaries
Copper
Copper converters
Copper ores
Cretaceous
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Electric arc melting
Fluids
Geochemistry
Geochronology
Geochronometry
Geology
Geophysics/Geodesy
Heavy metals
Magma
Melting
Metallogenesis
Palaeocene
Paleocene
Plate boundaries
Porphyry copper
Precambrian
Subduction
Subduction (geology)
Subduction zones
Volatiles
title Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porphyry%20copper%20formation%20driven%20by%20water-fluxed%20crustal%20melting%20during%20flat-slab%20subduction&rft.jtitle=Nature%20geoscience&rft.au=Lamont,%20Thomas%20N.&rft.date=2024-12-01&rft.volume=17&rft.issue=12&rft.spage=1306&rft.epage=1315&rft.pages=1306-1315&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-024-01575-2&rft_dat=%3Cproquest_cross%3E3141689042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141689042&rft_id=info:pmid/&rfr_iscdi=true