To bounce or not to bounce in generalized Proca theory and beyond
It is notoriously difficult to construct a stable non-singular bouncing cosmology that avoids all possible instabilities throughout the entire evolution of the universe. In this work, we explore whether a non-singular bounce driven by a specific class of modifications of General Relativity, the vect...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bohnenblust, Lara Giardino, Serena Heisenberg, Lavinia Nussbaumer, Nadine |
description | It is notoriously difficult to construct a stable non-singular bouncing cosmology that avoids all possible instabilities throughout the entire evolution of the universe. In this work, we explore whether a non-singular bounce driven by a specific class of modifications of General Relativity, the vector-tensor generalized Proca theories, can be constructed without encountering any pathologies in linear perturbation theory. We find that such models unavoidably lead to either an instability in the matter sector or strong coupling in the scalar one. As our analysis is performed in a gauge-independent way, this result can be cast in the form of a no-go theorem for non-singular bounces with generalized Proca. In contrast to the no-go theorem found for Horndeski theories, however, it cannot be evaded by considering beyond generalized Proca theory. At the core of our result lies the non-dynamical nature of the temporal component of the vector field, which renders it an ill-suited mediator for a bouncing solution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141684619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141684619</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416846193</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC50CRtraOI4ujQvaTNq7aU9zRJh_r1Ooiz08HdLUSktJZJmSm1ErH3Q5qmqtipPNeROFQMDU_UIrAD4gDhJ3qCGxI6M_YvtHB13BoId2Q3gyELDc5MdiOWnRk9xl-uxfZ8qo6X5OH4OaEP9cCTo0-qtcxkUWaF3Ov_rjcyWTjx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141684619</pqid></control><display><type>article</type><title>To bounce or not to bounce in generalized Proca theory and beyond</title><source>Free E- Journals</source><creator>Bohnenblust, Lara ; Giardino, Serena ; Heisenberg, Lavinia ; Nussbaumer, Nadine</creator><creatorcontrib>Bohnenblust, Lara ; Giardino, Serena ; Heisenberg, Lavinia ; Nussbaumer, Nadine</creatorcontrib><description>It is notoriously difficult to construct a stable non-singular bouncing cosmology that avoids all possible instabilities throughout the entire evolution of the universe. In this work, we explore whether a non-singular bounce driven by a specific class of modifications of General Relativity, the vector-tensor generalized Proca theories, can be constructed without encountering any pathologies in linear perturbation theory. We find that such models unavoidably lead to either an instability in the matter sector or strong coupling in the scalar one. As our analysis is performed in a gauge-independent way, this result can be cast in the form of a no-go theorem for non-singular bounces with generalized Proca. In contrast to the no-go theorem found for Horndeski theories, however, it cannot be evaded by considering beyond generalized Proca theory. At the core of our result lies the non-dynamical nature of the temporal component of the vector field, which renders it an ill-suited mediator for a bouncing solution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical models ; Bouncing ; Fields (mathematics) ; Perturbation theory ; Relativity ; Tensors ; Theorems</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bohnenblust, Lara</creatorcontrib><creatorcontrib>Giardino, Serena</creatorcontrib><creatorcontrib>Heisenberg, Lavinia</creatorcontrib><creatorcontrib>Nussbaumer, Nadine</creatorcontrib><title>To bounce or not to bounce in generalized Proca theory and beyond</title><title>arXiv.org</title><description>It is notoriously difficult to construct a stable non-singular bouncing cosmology that avoids all possible instabilities throughout the entire evolution of the universe. In this work, we explore whether a non-singular bounce driven by a specific class of modifications of General Relativity, the vector-tensor generalized Proca theories, can be constructed without encountering any pathologies in linear perturbation theory. We find that such models unavoidably lead to either an instability in the matter sector or strong coupling in the scalar one. As our analysis is performed in a gauge-independent way, this result can be cast in the form of a no-go theorem for non-singular bounces with generalized Proca. In contrast to the no-go theorem found for Horndeski theories, however, it cannot be evaded by considering beyond generalized Proca theory. At the core of our result lies the non-dynamical nature of the temporal component of the vector field, which renders it an ill-suited mediator for a bouncing solution.</description><subject>Astronomical models</subject><subject>Bouncing</subject><subject>Fields (mathematics)</subject><subject>Perturbation theory</subject><subject>Relativity</subject><subject>Tensors</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC50CRtraOI4ujQvaTNq7aU9zRJh_r1Ooiz08HdLUSktJZJmSm1ErH3Q5qmqtipPNeROFQMDU_UIrAD4gDhJ3qCGxI6M_YvtHB13BoId2Q3gyELDc5MdiOWnRk9xl-uxfZ8qo6X5OH4OaEP9cCTo0-qtcxkUWaF3Ov_rjcyWTjx</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Bohnenblust, Lara</creator><creator>Giardino, Serena</creator><creator>Heisenberg, Lavinia</creator><creator>Nussbaumer, Nadine</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>To bounce or not to bounce in generalized Proca theory and beyond</title><author>Bohnenblust, Lara ; Giardino, Serena ; Heisenberg, Lavinia ; Nussbaumer, Nadine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416846193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomical models</topic><topic>Bouncing</topic><topic>Fields (mathematics)</topic><topic>Perturbation theory</topic><topic>Relativity</topic><topic>Tensors</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bohnenblust, Lara</creatorcontrib><creatorcontrib>Giardino, Serena</creatorcontrib><creatorcontrib>Heisenberg, Lavinia</creatorcontrib><creatorcontrib>Nussbaumer, Nadine</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohnenblust, Lara</au><au>Giardino, Serena</au><au>Heisenberg, Lavinia</au><au>Nussbaumer, Nadine</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>To bounce or not to bounce in generalized Proca theory and beyond</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>It is notoriously difficult to construct a stable non-singular bouncing cosmology that avoids all possible instabilities throughout the entire evolution of the universe. In this work, we explore whether a non-singular bounce driven by a specific class of modifications of General Relativity, the vector-tensor generalized Proca theories, can be constructed without encountering any pathologies in linear perturbation theory. We find that such models unavoidably lead to either an instability in the matter sector or strong coupling in the scalar one. As our analysis is performed in a gauge-independent way, this result can be cast in the form of a no-go theorem for non-singular bounces with generalized Proca. In contrast to the no-go theorem found for Horndeski theories, however, it cannot be evaded by considering beyond generalized Proca theory. At the core of our result lies the non-dynamical nature of the temporal component of the vector field, which renders it an ill-suited mediator for a bouncing solution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141684619 |
source | Free E- Journals |
subjects | Astronomical models Bouncing Fields (mathematics) Perturbation theory Relativity Tensors Theorems |
title | To bounce or not to bounce in generalized Proca theory and beyond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=To%20bounce%20or%20not%20to%20bounce%20in%20generalized%20Proca%20theory%20and%20beyond&rft.jtitle=arXiv.org&rft.au=Bohnenblust,%20Lara&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141684619%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141684619&rft_id=info:pmid/&rfr_iscdi=true |