On Local Irregularity Conjecture for 2-multigraphs
A multigraph in which adjacent vertices have different degrees is called locally irregular. The locally irregular edge coloring is an edge coloring of a multigraph \(G\) in which every color induces a locally irregular submultigraph of \(G\). We denote by \(\operatorname{lir}(G)\) the locally irregu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Grzelec, Igor Onderko, Alfréd Woźniak, Mariusz |
description | A multigraph in which adjacent vertices have different degrees is called locally irregular. The locally irregular edge coloring is an edge coloring of a multigraph \(G\) in which every color induces a locally irregular submultigraph of \(G\). We denote by \(\operatorname{lir}(G)\) the locally irregular chromatic index of a multigraph \(G\), which is the smallest number of colors required in a locally irregular edge coloring of \(G\), given that such a coloring of \(G\) exists. By \(^2G\) we denote a 2-multigraph obtained from a simple graph \(G\) by doubling each its edge. In 2022 Grzelec and Woźniak conjectured that \(\operatorname{lir}(^2G) \leq 2\) for every connected simple graph \(G\) different from \(K_2\); the conjecture is known as Local Irregularity Conjecture for 2-multigraphs. In this paper, we prove this conjecture in the case of regular graphs, split graphs, and some particular families of subcubic graphs. Moreover, we provide a constant upper bound on the locally irregular chromatic index of planar 2-multigraphs (except for \(^2K_2\)), and we obtain a better constant upper bound on \(\operatorname{lir}(^2G)\) if \(G\) is a simple subcubic graph different from \(K_2\). In the proofs, special decompositions of graphs and the relation of Local Irregularity Conjecture to the well-known 1-2-3 Conjecture are utilized. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141681489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141681489</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416814893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8s9T8MlPTsxR8CwqSk0vzUksyiypVHDOz8tKTS4pLUpVSMsvUjDSzS3NKclML0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0MTQzMLQxMLS2PiVAEAyjgzxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141681489</pqid></control><display><type>article</type><title>On Local Irregularity Conjecture for 2-multigraphs</title><source>Free E- Journals</source><creator>Grzelec, Igor ; Onderko, Alfréd ; Woźniak, Mariusz</creator><creatorcontrib>Grzelec, Igor ; Onderko, Alfréd ; Woźniak, Mariusz</creatorcontrib><description>A multigraph in which adjacent vertices have different degrees is called locally irregular. The locally irregular edge coloring is an edge coloring of a multigraph \(G\) in which every color induces a locally irregular submultigraph of \(G\). We denote by \(\operatorname{lir}(G)\) the locally irregular chromatic index of a multigraph \(G\), which is the smallest number of colors required in a locally irregular edge coloring of \(G\), given that such a coloring of \(G\) exists. By \(^2G\) we denote a 2-multigraph obtained from a simple graph \(G\) by doubling each its edge. In 2022 Grzelec and Woźniak conjectured that \(\operatorname{lir}(^2G) \leq 2\) for every connected simple graph \(G\) different from \(K_2\); the conjecture is known as Local Irregularity Conjecture for 2-multigraphs. In this paper, we prove this conjecture in the case of regular graphs, split graphs, and some particular families of subcubic graphs. Moreover, we provide a constant upper bound on the locally irregular chromatic index of planar 2-multigraphs (except for \(^2K_2\)), and we obtain a better constant upper bound on \(\operatorname{lir}(^2G)\) if \(G\) is a simple subcubic graph different from \(K_2\). In the proofs, special decompositions of graphs and the relation of Local Irregularity Conjecture to the well-known 1-2-3 Conjecture are utilized.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graph coloring ; Graph theory ; Graphs ; Irregularities ; Upper bounds</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Grzelec, Igor</creatorcontrib><creatorcontrib>Onderko, Alfréd</creatorcontrib><creatorcontrib>Woźniak, Mariusz</creatorcontrib><title>On Local Irregularity Conjecture for 2-multigraphs</title><title>arXiv.org</title><description>A multigraph in which adjacent vertices have different degrees is called locally irregular. The locally irregular edge coloring is an edge coloring of a multigraph \(G\) in which every color induces a locally irregular submultigraph of \(G\). We denote by \(\operatorname{lir}(G)\) the locally irregular chromatic index of a multigraph \(G\), which is the smallest number of colors required in a locally irregular edge coloring of \(G\), given that such a coloring of \(G\) exists. By \(^2G\) we denote a 2-multigraph obtained from a simple graph \(G\) by doubling each its edge. In 2022 Grzelec and Woźniak conjectured that \(\operatorname{lir}(^2G) \leq 2\) for every connected simple graph \(G\) different from \(K_2\); the conjecture is known as Local Irregularity Conjecture for 2-multigraphs. In this paper, we prove this conjecture in the case of regular graphs, split graphs, and some particular families of subcubic graphs. Moreover, we provide a constant upper bound on the locally irregular chromatic index of planar 2-multigraphs (except for \(^2K_2\)), and we obtain a better constant upper bound on \(\operatorname{lir}(^2G)\) if \(G\) is a simple subcubic graph different from \(K_2\). In the proofs, special decompositions of graphs and the relation of Local Irregularity Conjecture to the well-known 1-2-3 Conjecture are utilized.</description><subject>Apexes</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Irregularities</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8s9T8MlPTsxR8CwqSk0vzUksyiypVHDOz8tKTS4pLUpVSMsvUjDSzS3NKclML0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0MTQzMLQxMLS2PiVAEAyjgzxA</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Grzelec, Igor</creator><creator>Onderko, Alfréd</creator><creator>Woźniak, Mariusz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>On Local Irregularity Conjecture for 2-multigraphs</title><author>Grzelec, Igor ; Onderko, Alfréd ; Woźniak, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416814893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Irregularities</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Grzelec, Igor</creatorcontrib><creatorcontrib>Onderko, Alfréd</creatorcontrib><creatorcontrib>Woźniak, Mariusz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grzelec, Igor</au><au>Onderko, Alfréd</au><au>Woźniak, Mariusz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Local Irregularity Conjecture for 2-multigraphs</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A multigraph in which adjacent vertices have different degrees is called locally irregular. The locally irregular edge coloring is an edge coloring of a multigraph \(G\) in which every color induces a locally irregular submultigraph of \(G\). We denote by \(\operatorname{lir}(G)\) the locally irregular chromatic index of a multigraph \(G\), which is the smallest number of colors required in a locally irregular edge coloring of \(G\), given that such a coloring of \(G\) exists. By \(^2G\) we denote a 2-multigraph obtained from a simple graph \(G\) by doubling each its edge. In 2022 Grzelec and Woźniak conjectured that \(\operatorname{lir}(^2G) \leq 2\) for every connected simple graph \(G\) different from \(K_2\); the conjecture is known as Local Irregularity Conjecture for 2-multigraphs. In this paper, we prove this conjecture in the case of regular graphs, split graphs, and some particular families of subcubic graphs. Moreover, we provide a constant upper bound on the locally irregular chromatic index of planar 2-multigraphs (except for \(^2K_2\)), and we obtain a better constant upper bound on \(\operatorname{lir}(^2G)\) if \(G\) is a simple subcubic graph different from \(K_2\). In the proofs, special decompositions of graphs and the relation of Local Irregularity Conjecture to the well-known 1-2-3 Conjecture are utilized.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141681489 |
source | Free E- Journals |
subjects | Apexes Graph coloring Graph theory Graphs Irregularities Upper bounds |
title | On Local Irregularity Conjecture for 2-multigraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Local%20Irregularity%20Conjecture%20for%202-multigraphs&rft.jtitle=arXiv.org&rft.au=Grzelec,%20Igor&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141681489%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141681489&rft_id=info:pmid/&rfr_iscdi=true |