CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations
This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conver...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Neupane, Subash Tripathi, Himanshu Mitra, Shaswata Bozorgzad, Sean Mittal, Sudip Rahimi, Shahram Amin Amirlatifi |
description | This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conversation transcripts, and an inference module powered by fine-tuned Pre-trained Language Models (PLMs), which leverage the extracted SOAP data to generate abstracted clinical summaries. To fine-tune the PLM, we created a training dataset of consisting 1,473 conversations-summaries pair by consolidating two publicly available datasets, FigShare and MTS-Dialog, with ground truth summaries validated by Subject Matter Experts (SMEs). ClinicSum's effectiveness is evaluated through both automatic metrics (e.g., ROUGE, BERTScore) and expert human assessments. Results show that ClinicSum outperforms state-of-the-art PLMs, demonstrating superior precision, recall, and F-1 scores in automatic evaluations and receiving high preference from SMEs in human assessment, making it a robust solution for automated clinical summarization. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141681159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141681159</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416811593</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMgKNp_CLguNElbH9v4KlQRqmsJ9VojaaJJ6sKvN4If4OrAzJweGlLGSDxLKR2gyLl7kiQ0n9IsY0N042WxL3h12i3wyUsl31I3uBS66UQDeGcuoBy-Gos3oMEK_9VcSS1roXDVta2wEkJhTYsPQYP28dLUPjy40S-wLkCj3Rj1r0I5iH47QpP16si38cOaZwfOn--mszqoMyMpyWeEZHP2X_UByDtHUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141681159</pqid></control><display><type>article</type><title>CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations</title><source>Free E- Journals</source><creator>Neupane, Subash ; Tripathi, Himanshu ; Mitra, Shaswata ; Bozorgzad, Sean ; Mittal, Sudip ; Rahimi, Shahram ; Amin Amirlatifi</creator><creatorcontrib>Neupane, Subash ; Tripathi, Himanshu ; Mitra, Shaswata ; Bozorgzad, Sean ; Mittal, Sudip ; Rahimi, Shahram ; Amin Amirlatifi</creatorcontrib><description>This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conversation transcripts, and an inference module powered by fine-tuned Pre-trained Language Models (PLMs), which leverage the extracted SOAP data to generate abstracted clinical summaries. To fine-tune the PLM, we created a training dataset of consisting 1,473 conversations-summaries pair by consolidating two publicly available datasets, FigShare and MTS-Dialog, with ground truth summaries validated by Subject Matter Experts (SMEs). ClinicSum's effectiveness is evaluated through both automatic metrics (e.g., ROUGE, BERTScore) and expert human assessments. Results show that ClinicSum outperforms state-of-the-art PLMs, demonstrating superior precision, recall, and F-1 scores in automatic evaluations and receiving high preference from SMEs in human assessment, making it a robust solution for automated clinical summarization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Modules ; Soaps ; Summaries</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Neupane, Subash</creatorcontrib><creatorcontrib>Tripathi, Himanshu</creatorcontrib><creatorcontrib>Mitra, Shaswata</creatorcontrib><creatorcontrib>Bozorgzad, Sean</creatorcontrib><creatorcontrib>Mittal, Sudip</creatorcontrib><creatorcontrib>Rahimi, Shahram</creatorcontrib><creatorcontrib>Amin Amirlatifi</creatorcontrib><title>CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations</title><title>arXiv.org</title><description>This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conversation transcripts, and an inference module powered by fine-tuned Pre-trained Language Models (PLMs), which leverage the extracted SOAP data to generate abstracted clinical summaries. To fine-tune the PLM, we created a training dataset of consisting 1,473 conversations-summaries pair by consolidating two publicly available datasets, FigShare and MTS-Dialog, with ground truth summaries validated by Subject Matter Experts (SMEs). ClinicSum's effectiveness is evaluated through both automatic metrics (e.g., ROUGE, BERTScore) and expert human assessments. Results show that ClinicSum outperforms state-of-the-art PLMs, demonstrating superior precision, recall, and F-1 scores in automatic evaluations and receiving high preference from SMEs in human assessment, making it a robust solution for automated clinical summarization.</description><subject>Datasets</subject><subject>Modules</subject><subject>Soaps</subject><subject>Summaries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAUBYMgKNp_CLguNElbH9v4KlQRqmsJ9VojaaJJ6sKvN4If4OrAzJweGlLGSDxLKR2gyLl7kiQ0n9IsY0N042WxL3h12i3wyUsl31I3uBS66UQDeGcuoBy-Gos3oMEK_9VcSS1roXDVta2wEkJhTYsPQYP28dLUPjy40S-wLkCj3Rj1r0I5iH47QpP16si38cOaZwfOn--mszqoMyMpyWeEZHP2X_UByDtHUg</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Neupane, Subash</creator><creator>Tripathi, Himanshu</creator><creator>Mitra, Shaswata</creator><creator>Bozorgzad, Sean</creator><creator>Mittal, Sudip</creator><creator>Rahimi, Shahram</creator><creator>Amin Amirlatifi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations</title><author>Neupane, Subash ; Tripathi, Himanshu ; Mitra, Shaswata ; Bozorgzad, Sean ; Mittal, Sudip ; Rahimi, Shahram ; Amin Amirlatifi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416811593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Modules</topic><topic>Soaps</topic><topic>Summaries</topic><toplevel>online_resources</toplevel><creatorcontrib>Neupane, Subash</creatorcontrib><creatorcontrib>Tripathi, Himanshu</creatorcontrib><creatorcontrib>Mitra, Shaswata</creatorcontrib><creatorcontrib>Bozorgzad, Sean</creatorcontrib><creatorcontrib>Mittal, Sudip</creatorcontrib><creatorcontrib>Rahimi, Shahram</creatorcontrib><creatorcontrib>Amin Amirlatifi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neupane, Subash</au><au>Tripathi, Himanshu</au><au>Mitra, Shaswata</au><au>Bozorgzad, Sean</au><au>Mittal, Sudip</au><au>Rahimi, Shahram</au><au>Amin Amirlatifi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents ClinicSum, a novel framework designed to automatically generate clinical summaries from patient-doctor conversations. It utilizes a two-module architecture: a retrieval-based filtering module that extracts Subjective, Objective, Assessment, and Plan (SOAP) information from conversation transcripts, and an inference module powered by fine-tuned Pre-trained Language Models (PLMs), which leverage the extracted SOAP data to generate abstracted clinical summaries. To fine-tune the PLM, we created a training dataset of consisting 1,473 conversations-summaries pair by consolidating two publicly available datasets, FigShare and MTS-Dialog, with ground truth summaries validated by Subject Matter Experts (SMEs). ClinicSum's effectiveness is evaluated through both automatic metrics (e.g., ROUGE, BERTScore) and expert human assessments. Results show that ClinicSum outperforms state-of-the-art PLMs, demonstrating superior precision, recall, and F-1 scores in automatic evaluations and receiving high preference from SMEs in human assessment, making it a robust solution for automated clinical summarization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141681159 |
source | Free E- Journals |
subjects | Datasets Modules Soaps Summaries |
title | CLINICSUM: Utilizing Language Models for Generating Clinical Summaries from Patient-Doctor Conversations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CLINICSUM:%20Utilizing%20Language%20Models%20for%20Generating%20Clinical%20Summaries%20from%20Patient-Doctor%20Conversations&rft.jtitle=arXiv.org&rft.au=Neupane,%20Subash&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141681159%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141681159&rft_id=info:pmid/&rfr_iscdi=true |