Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation
High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configurat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2024-12, Vol.20 (12), p.14239-14248 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14248 |
---|---|
container_issue | 12 |
container_start_page | 14239 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Jin, Tianlei Zhu, Hongwei Zhu, Jiakai Zhu, Shiqiang He, Zaixing Zhang, Shuyou Song, Wei Gu, Jason |
description | High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully. |
doi_str_mv | 10.1109/TII.2024.3441661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3141617656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10644079</ieee_id><sourcerecordid>3141617656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-fc4108db0fd99685a296b72261f03bd8728b464b59ce4cfaa81a2f6e805902ef3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEEqVw58DBEueU9SNOfATEI6JVESriGNnJGlKldnFSpP57XNoDp93RzuxIX5JcUphQCupmUZYTBkxMuBBUSnqUjKgSNAXI4DjuWUZTzoCfJmd9vwTgOXA1SszHl-8wvfPNlpTuB0OP5KV1uNJDW_dEu4bM1xii8i6dhxbdgA2Z-Z0mr512rnWfxPpA3rzxQ7yYtkMy065db7q_2HlyYnXX48VhjpP3x4fF_XM6nT-V97fTtKZ5NqS2FhSKxoBtlJJFppmSJmdMUgvcNEXOCiOkMJmqUdRW64JqZiUWkClgaPk4ud7_XQf_vcF-qJZ-E1ysrDiNTGguMxldsHfVwfd9QFutQ7vSYVtRqHYkq0iy2pGsDiRj5GofaRHxn10KAbniv4BNb5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141617656</pqid></control><display><type>article</type><title>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Tianlei ; Zhu, Hongwei ; Zhu, Jiakai ; Zhu, Shiqiang ; He, Zaixing ; Zhang, Shuyou ; Song, Wei ; Gu, Jason</creator><creatorcontrib>Jin, Tianlei ; Zhu, Hongwei ; Zhu, Jiakai ; Zhu, Shiqiang ; He, Zaixing ; Zhang, Shuyou ; Song, Wei ; Gu, Jason</creatorcontrib><description>High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3441661</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Configuration management ; Degrees of freedom ; Design optimization ; Inverse kinematics ; Kinematics ; Manipulators ; Masks ; Mobile manipulation ; Motion planning ; Network management systems ; neural network optimization (NNO) ; Neural networks ; Obstacle avoidance ; operation-oriented motion planning (OOMP) ; Optimization ; Planning ; Robot arms ; Robot dynamics ; Robot kinematics ; Robots ; Target masking ; Trajectory ; Trajectory optimization ; whole-body inverse kinematics</subject><ispartof>IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14239-14248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-fc4108db0fd99685a296b72261f03bd8728b464b59ce4cfaa81a2f6e805902ef3</cites><orcidid>0000-0002-0828-7486 ; 0000-0001-8682-7946 ; 0000-0001-9023-5361 ; 0000-0002-7626-1077 ; 0000-0002-6453-0663 ; 0000-0003-0577-8009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10644079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10644079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Tianlei</creatorcontrib><creatorcontrib>Zhu, Hongwei</creatorcontrib><creatorcontrib>Zhu, Jiakai</creatorcontrib><creatorcontrib>Zhu, Shiqiang</creatorcontrib><creatorcontrib>He, Zaixing</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Gu, Jason</creatorcontrib><title>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.</description><subject>Artificial neural networks</subject><subject>Configuration management</subject><subject>Degrees of freedom</subject><subject>Design optimization</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Masks</subject><subject>Mobile manipulation</subject><subject>Motion planning</subject><subject>Network management systems</subject><subject>neural network optimization (NNO)</subject><subject>Neural networks</subject><subject>Obstacle avoidance</subject><subject>operation-oriented motion planning (OOMP)</subject><subject>Optimization</subject><subject>Planning</subject><subject>Robot arms</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Target masking</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>whole-body inverse kinematics</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhCMEEqVw58DBEueU9SNOfATEI6JVESriGNnJGlKldnFSpP57XNoDp93RzuxIX5JcUphQCupmUZYTBkxMuBBUSnqUjKgSNAXI4DjuWUZTzoCfJmd9vwTgOXA1SszHl-8wvfPNlpTuB0OP5KV1uNJDW_dEu4bM1xii8i6dhxbdgA2Z-Z0mr512rnWfxPpA3rzxQ7yYtkMy065db7q_2HlyYnXX48VhjpP3x4fF_XM6nT-V97fTtKZ5NqS2FhSKxoBtlJJFppmSJmdMUgvcNEXOCiOkMJmqUdRW64JqZiUWkClgaPk4ud7_XQf_vcF-qJZ-E1ysrDiNTGguMxldsHfVwfd9QFutQ7vSYVtRqHYkq0iy2pGsDiRj5GofaRHxn10KAbniv4BNb5A</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Jin, Tianlei</creator><creator>Zhu, Hongwei</creator><creator>Zhu, Jiakai</creator><creator>Zhu, Shiqiang</creator><creator>He, Zaixing</creator><creator>Zhang, Shuyou</creator><creator>Song, Wei</creator><creator>Gu, Jason</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0828-7486</orcidid><orcidid>https://orcid.org/0000-0001-8682-7946</orcidid><orcidid>https://orcid.org/0000-0001-9023-5361</orcidid><orcidid>https://orcid.org/0000-0002-7626-1077</orcidid><orcidid>https://orcid.org/0000-0002-6453-0663</orcidid><orcidid>https://orcid.org/0000-0003-0577-8009</orcidid></search><sort><creationdate>20241201</creationdate><title>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</title><author>Jin, Tianlei ; Zhu, Hongwei ; Zhu, Jiakai ; Zhu, Shiqiang ; He, Zaixing ; Zhang, Shuyou ; Song, Wei ; Gu, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-fc4108db0fd99685a296b72261f03bd8728b464b59ce4cfaa81a2f6e805902ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Configuration management</topic><topic>Degrees of freedom</topic><topic>Design optimization</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Masks</topic><topic>Mobile manipulation</topic><topic>Motion planning</topic><topic>Network management systems</topic><topic>neural network optimization (NNO)</topic><topic>Neural networks</topic><topic>Obstacle avoidance</topic><topic>operation-oriented motion planning (OOMP)</topic><topic>Optimization</topic><topic>Planning</topic><topic>Robot arms</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Target masking</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>whole-body inverse kinematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Tianlei</creatorcontrib><creatorcontrib>Zhu, Hongwei</creatorcontrib><creatorcontrib>Zhu, Jiakai</creatorcontrib><creatorcontrib>Zhu, Shiqiang</creatorcontrib><creatorcontrib>He, Zaixing</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Gu, Jason</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Tianlei</au><au>Zhu, Hongwei</au><au>Zhu, Jiakai</au><au>Zhu, Shiqiang</au><au>He, Zaixing</au><au>Zhang, Shuyou</au><au>Song, Wei</au><au>Gu, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>14239</spage><epage>14248</epage><pages>14239-14248</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3441661</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0828-7486</orcidid><orcidid>https://orcid.org/0000-0001-8682-7946</orcidid><orcidid>https://orcid.org/0000-0001-9023-5361</orcidid><orcidid>https://orcid.org/0000-0002-7626-1077</orcidid><orcidid>https://orcid.org/0000-0002-6453-0663</orcidid><orcidid>https://orcid.org/0000-0003-0577-8009</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14239-14248 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_3141617656 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Configuration management Degrees of freedom Design optimization Inverse kinematics Kinematics Manipulators Masks Mobile manipulation Motion planning Network management systems neural network optimization (NNO) Neural networks Obstacle avoidance operation-oriented motion planning (OOMP) Optimization Planning Robot arms Robot dynamics Robot kinematics Robots Target masking Trajectory Trajectory optimization whole-body inverse kinematics |
title | Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-Body%20Inverse%20Kinematics%20and%20Operation-Oriented%20Motion%20Planning%20for%20Robot%20Mobile%20Manipulation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Jin,%20Tianlei&rft.date=2024-12-01&rft.volume=20&rft.issue=12&rft.spage=14239&rft.epage=14248&rft.pages=14239-14248&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3441661&rft_dat=%3Cproquest_RIE%3E3141617656%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141617656&rft_id=info:pmid/&rft_ieee_id=10644079&rfr_iscdi=true |