Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation

High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-12, Vol.20 (12), p.14239-14248
Hauptverfasser: Jin, Tianlei, Zhu, Hongwei, Zhu, Jiakai, Zhu, Shiqiang, He, Zaixing, Zhang, Shuyou, Song, Wei, Gu, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14248
container_issue 12
container_start_page 14239
container_title IEEE transactions on industrial informatics
container_volume 20
creator Jin, Tianlei
Zhu, Hongwei
Zhu, Jiakai
Zhu, Shiqiang
He, Zaixing
Zhang, Shuyou
Song, Wei
Gu, Jason
description High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.
doi_str_mv 10.1109/TII.2024.3441661
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3141617656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10644079</ieee_id><sourcerecordid>3141617656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-fc4108db0fd99685a296b72261f03bd8728b464b59ce4cfaa81a2f6e805902ef3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEEqVw58DBEueU9SNOfATEI6JVESriGNnJGlKldnFSpP57XNoDp93RzuxIX5JcUphQCupmUZYTBkxMuBBUSnqUjKgSNAXI4DjuWUZTzoCfJmd9vwTgOXA1SszHl-8wvfPNlpTuB0OP5KV1uNJDW_dEu4bM1xii8i6dhxbdgA2Z-Z0mr512rnWfxPpA3rzxQ7yYtkMy065db7q_2HlyYnXX48VhjpP3x4fF_XM6nT-V97fTtKZ5NqS2FhSKxoBtlJJFppmSJmdMUgvcNEXOCiOkMJmqUdRW64JqZiUWkClgaPk4ud7_XQf_vcF-qJZ-E1ysrDiNTGguMxldsHfVwfd9QFutQ7vSYVtRqHYkq0iy2pGsDiRj5GofaRHxn10KAbniv4BNb5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141617656</pqid></control><display><type>article</type><title>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Tianlei ; Zhu, Hongwei ; Zhu, Jiakai ; Zhu, Shiqiang ; He, Zaixing ; Zhang, Shuyou ; Song, Wei ; Gu, Jason</creator><creatorcontrib>Jin, Tianlei ; Zhu, Hongwei ; Zhu, Jiakai ; Zhu, Shiqiang ; He, Zaixing ; Zhang, Shuyou ; Song, Wei ; Gu, Jason</creatorcontrib><description>High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3441661</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Configuration management ; Degrees of freedom ; Design optimization ; Inverse kinematics ; Kinematics ; Manipulators ; Masks ; Mobile manipulation ; Motion planning ; Network management systems ; neural network optimization (NNO) ; Neural networks ; Obstacle avoidance ; operation-oriented motion planning (OOMP) ; Optimization ; Planning ; Robot arms ; Robot dynamics ; Robot kinematics ; Robots ; Target masking ; Trajectory ; Trajectory optimization ; whole-body inverse kinematics</subject><ispartof>IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14239-14248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-fc4108db0fd99685a296b72261f03bd8728b464b59ce4cfaa81a2f6e805902ef3</cites><orcidid>0000-0002-0828-7486 ; 0000-0001-8682-7946 ; 0000-0001-9023-5361 ; 0000-0002-7626-1077 ; 0000-0002-6453-0663 ; 0000-0003-0577-8009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10644079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10644079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Tianlei</creatorcontrib><creatorcontrib>Zhu, Hongwei</creatorcontrib><creatorcontrib>Zhu, Jiakai</creatorcontrib><creatorcontrib>Zhu, Shiqiang</creatorcontrib><creatorcontrib>He, Zaixing</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Gu, Jason</creatorcontrib><title>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.</description><subject>Artificial neural networks</subject><subject>Configuration management</subject><subject>Degrees of freedom</subject><subject>Design optimization</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Masks</subject><subject>Mobile manipulation</subject><subject>Motion planning</subject><subject>Network management systems</subject><subject>neural network optimization (NNO)</subject><subject>Neural networks</subject><subject>Obstacle avoidance</subject><subject>operation-oriented motion planning (OOMP)</subject><subject>Optimization</subject><subject>Planning</subject><subject>Robot arms</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Target masking</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>whole-body inverse kinematics</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhCMEEqVw58DBEueU9SNOfATEI6JVESriGNnJGlKldnFSpP57XNoDp93RzuxIX5JcUphQCupmUZYTBkxMuBBUSnqUjKgSNAXI4DjuWUZTzoCfJmd9vwTgOXA1SszHl-8wvfPNlpTuB0OP5KV1uNJDW_dEu4bM1xii8i6dhxbdgA2Z-Z0mr512rnWfxPpA3rzxQ7yYtkMy065db7q_2HlyYnXX48VhjpP3x4fF_XM6nT-V97fTtKZ5NqS2FhSKxoBtlJJFppmSJmdMUgvcNEXOCiOkMJmqUdRW64JqZiUWkClgaPk4ud7_XQf_vcF-qJZ-E1ysrDiNTGguMxldsHfVwfd9QFutQ7vSYVtRqHYkq0iy2pGsDiRj5GofaRHxn10KAbniv4BNb5A</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Jin, Tianlei</creator><creator>Zhu, Hongwei</creator><creator>Zhu, Jiakai</creator><creator>Zhu, Shiqiang</creator><creator>He, Zaixing</creator><creator>Zhang, Shuyou</creator><creator>Song, Wei</creator><creator>Gu, Jason</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0828-7486</orcidid><orcidid>https://orcid.org/0000-0001-8682-7946</orcidid><orcidid>https://orcid.org/0000-0001-9023-5361</orcidid><orcidid>https://orcid.org/0000-0002-7626-1077</orcidid><orcidid>https://orcid.org/0000-0002-6453-0663</orcidid><orcidid>https://orcid.org/0000-0003-0577-8009</orcidid></search><sort><creationdate>20241201</creationdate><title>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</title><author>Jin, Tianlei ; Zhu, Hongwei ; Zhu, Jiakai ; Zhu, Shiqiang ; He, Zaixing ; Zhang, Shuyou ; Song, Wei ; Gu, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-fc4108db0fd99685a296b72261f03bd8728b464b59ce4cfaa81a2f6e805902ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Configuration management</topic><topic>Degrees of freedom</topic><topic>Design optimization</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Masks</topic><topic>Mobile manipulation</topic><topic>Motion planning</topic><topic>Network management systems</topic><topic>neural network optimization (NNO)</topic><topic>Neural networks</topic><topic>Obstacle avoidance</topic><topic>operation-oriented motion planning (OOMP)</topic><topic>Optimization</topic><topic>Planning</topic><topic>Robot arms</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Target masking</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>whole-body inverse kinematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Tianlei</creatorcontrib><creatorcontrib>Zhu, Hongwei</creatorcontrib><creatorcontrib>Zhu, Jiakai</creatorcontrib><creatorcontrib>Zhu, Shiqiang</creatorcontrib><creatorcontrib>He, Zaixing</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Gu, Jason</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Tianlei</au><au>Zhu, Hongwei</au><au>Zhu, Jiakai</au><au>Zhu, Shiqiang</au><au>He, Zaixing</au><au>Zhang, Shuyou</au><au>Song, Wei</au><au>Gu, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>14239</spage><epage>14248</epage><pages>14239-14248</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>High DoF mobile manipulation of robots is a nonlinear, nonchain redundant problem. In this article, we focus on two subissues of robot mobile manipulation: whole-body inverse kinematics (whole-body IK) and operation-oriented motion planning (OOMP). Whole-body IK solves the robot arm joint configuration and the mobile base position configuration according to the target pose. OOMP generates a feasible trajectory from the current pose to the target pose. The trajectory can avoid obstacles and touch operated objects. We introduce neural network optimization (NNO) methods with two variations to solve whole-body IK and OOMP, respectively. For whole-body IK, we design a fully connected network (FCN) to predict ten DoF of position and joint configurations based on the target pose. We use these ten DoF configurations to derive the predicted pose for online optimization. For OOMP, we design a GRU-based network to generate trajectories based on the initial and goal states. We mainly adopt sphere masks to modify the point cloud properties of the target object dynamically. During optimization, the trajectory keeps away from point clouds but approaches sphere masks. Finally, we conduct extensive experiments both on a Franka Panda robot and a mobile dual-arm robot. The results demonstrate the superior performance of our NNO method on whole body IK and OOMP, and implement mobile manipulation in different environments successfully.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3441661</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0828-7486</orcidid><orcidid>https://orcid.org/0000-0001-8682-7946</orcidid><orcidid>https://orcid.org/0000-0001-9023-5361</orcidid><orcidid>https://orcid.org/0000-0002-7626-1077</orcidid><orcidid>https://orcid.org/0000-0002-6453-0663</orcidid><orcidid>https://orcid.org/0000-0003-0577-8009</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14239-14248
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_3141617656
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Configuration management
Degrees of freedom
Design optimization
Inverse kinematics
Kinematics
Manipulators
Masks
Mobile manipulation
Motion planning
Network management systems
neural network optimization (NNO)
Neural networks
Obstacle avoidance
operation-oriented motion planning (OOMP)
Optimization
Planning
Robot arms
Robot dynamics
Robot kinematics
Robots
Target masking
Trajectory
Trajectory optimization
whole-body inverse kinematics
title Whole-Body Inverse Kinematics and Operation-Oriented Motion Planning for Robot Mobile Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-Body%20Inverse%20Kinematics%20and%20Operation-Oriented%20Motion%20Planning%20for%20Robot%20Mobile%20Manipulation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Jin,%20Tianlei&rft.date=2024-12-01&rft.volume=20&rft.issue=12&rft.spage=14239&rft.epage=14248&rft.pages=14239-14248&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3441661&rft_dat=%3Cproquest_RIE%3E3141617656%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141617656&rft_id=info:pmid/&rft_ieee_id=10644079&rfr_iscdi=true