Large-Scale Measurements and Optimizations on Latency in Edge Clouds
The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cloud computing 2024-10, Vol.12 (4), p.1218-1231 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1231 |
---|---|
container_issue | 4 |
container_start_page | 1218 |
container_title | IEEE transactions on cloud computing |
container_volume | 12 |
creator | Zhang, Heng Huang, Shaoyuan Xu, Mengwei Guo, Deke Wang, Xiaofei Wang, Xin Leung, Victor C. M. Wang, Wenyu |
description | The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds. |
doi_str_mv | 10.1109/TCC.2024.3452094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3141614518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10660479</ieee_id><sourcerecordid>3141614518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-60fd7766fc92ec980ebc5727a6762d47f14581493496c21c57fbe0e866bed72f3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsBgiTnF5zh2PKJQPqSgDpTZcp1Llap1ip0M5a_HVTtwy510793T_Qi5BzYHYPppVVVzzriY56LgTIsrMuG54hljUF6nGWSZKZBwS2YxblmqsgANekJeahs2mH05u0P6iTaOAffoh0itb-jyMHT77tcOXe8j7T2t7YDeHWnn6aLZIK12_djEO3LT2l3E2aVPyffrYlW9Z_Xy7aN6rjMHqhgyydpGKSlbpzk6XTJcu0JxZaWSvBGqBVGUIHQutHQc0q5dI8NSyjU2irf5lDye7x5C_zNiHMy2H4NPkSYHkf4TBZRJxc4qF_oYA7bmELq9DUcDzJxwmYTLnHCZC65keThbOkT8J5eSCaXzPxs7ZGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141614518</pqid></control><display><type>article</type><title>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Heng ; Huang, Shaoyuan ; Xu, Mengwei ; Guo, Deke ; Wang, Xiaofei ; Wang, Xin ; Leung, Victor C. M. ; Wang, Wenyu</creator><creatorcontrib>Zhang, Heng ; Huang, Shaoyuan ; Xu, Mengwei ; Guo, Deke ; Wang, Xiaofei ; Wang, Xin ; Leung, Victor C. M. ; Wang, Wenyu</creatorcontrib><description>The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2024.3452094</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; edge clouds ; Edge computing ; Fluctuations ; latnecy optimization ; Network latency ; Optimization ; Performance evaluation ; Prototypes ; Quality of service ; Quality of service architectures ; Real-world dataset collection ; Servers ; spatial-temporal modeling ; Spatiotemporal data</subject><ispartof>IEEE transactions on cloud computing, 2024-10, Vol.12 (4), p.1218-1231</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-60fd7766fc92ec980ebc5727a6762d47f14581493496c21c57fbe0e866bed72f3</cites><orcidid>0000-0002-7223-1030 ; 0000-0003-4894-5540 ; 0000-0003-4874-6162 ; 0000-0002-4091-6457 ; 0000-0001-6271-6993 ; 0000-0001-9651-0651 ; 0000-0003-3529-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10660479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10660479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Huang, Shaoyuan</creatorcontrib><creatorcontrib>Xu, Mengwei</creatorcontrib><creatorcontrib>Guo, Deke</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><creatorcontrib>Wang, Wenyu</creatorcontrib><title>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.</description><subject>Cloud computing</subject><subject>edge clouds</subject><subject>Edge computing</subject><subject>Fluctuations</subject><subject>latnecy optimization</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Prototypes</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Real-world dataset collection</subject><subject>Servers</subject><subject>spatial-temporal modeling</subject><subject>Spatiotemporal data</subject><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsBgiTnF5zh2PKJQPqSgDpTZcp1Llap1ip0M5a_HVTtwy510793T_Qi5BzYHYPppVVVzzriY56LgTIsrMuG54hljUF6nGWSZKZBwS2YxblmqsgANekJeahs2mH05u0P6iTaOAffoh0itb-jyMHT77tcOXe8j7T2t7YDeHWnn6aLZIK12_djEO3LT2l3E2aVPyffrYlW9Z_Xy7aN6rjMHqhgyydpGKSlbpzk6XTJcu0JxZaWSvBGqBVGUIHQutHQc0q5dI8NSyjU2irf5lDye7x5C_zNiHMy2H4NPkSYHkf4TBZRJxc4qF_oYA7bmELq9DUcDzJxwmYTLnHCZC65keThbOkT8J5eSCaXzPxs7ZGA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Heng</creator><creator>Huang, Shaoyuan</creator><creator>Xu, Mengwei</creator><creator>Guo, Deke</creator><creator>Wang, Xiaofei</creator><creator>Wang, Xin</creator><creator>Leung, Victor C. M.</creator><creator>Wang, Wenyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7223-1030</orcidid><orcidid>https://orcid.org/0000-0003-4894-5540</orcidid><orcidid>https://orcid.org/0000-0003-4874-6162</orcidid><orcidid>https://orcid.org/0000-0002-4091-6457</orcidid><orcidid>https://orcid.org/0000-0001-6271-6993</orcidid><orcidid>https://orcid.org/0000-0001-9651-0651</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid></search><sort><creationdate>20241001</creationdate><title>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</title><author>Zhang, Heng ; Huang, Shaoyuan ; Xu, Mengwei ; Guo, Deke ; Wang, Xiaofei ; Wang, Xin ; Leung, Victor C. M. ; Wang, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-60fd7766fc92ec980ebc5727a6762d47f14581493496c21c57fbe0e866bed72f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>edge clouds</topic><topic>Edge computing</topic><topic>Fluctuations</topic><topic>latnecy optimization</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Prototypes</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Real-world dataset collection</topic><topic>Servers</topic><topic>spatial-temporal modeling</topic><topic>Spatiotemporal data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Huang, Shaoyuan</creatorcontrib><creatorcontrib>Xu, Mengwei</creatorcontrib><creatorcontrib>Guo, Deke</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><creatorcontrib>Wang, Wenyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Heng</au><au>Huang, Shaoyuan</au><au>Xu, Mengwei</au><au>Guo, Deke</au><au>Wang, Xiaofei</au><au>Wang, Xin</au><au>Leung, Victor C. M.</au><au>Wang, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><spage>1218</spage><epage>1231</epage><pages>1218-1231</pages><issn>2168-7161</issn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2024.3452094</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7223-1030</orcidid><orcidid>https://orcid.org/0000-0003-4894-5540</orcidid><orcidid>https://orcid.org/0000-0003-4874-6162</orcidid><orcidid>https://orcid.org/0000-0002-4091-6457</orcidid><orcidid>https://orcid.org/0000-0001-6271-6993</orcidid><orcidid>https://orcid.org/0000-0001-9651-0651</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-7161 |
ispartof | IEEE transactions on cloud computing, 2024-10, Vol.12 (4), p.1218-1231 |
issn | 2168-7161 2372-0018 |
language | eng |
recordid | cdi_proquest_journals_3141614518 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing edge clouds Edge computing Fluctuations latnecy optimization Network latency Optimization Performance evaluation Prototypes Quality of service Quality of service architectures Real-world dataset collection Servers spatial-temporal modeling Spatiotemporal data |
title | Large-Scale Measurements and Optimizations on Latency in Edge Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Measurements%20and%20Optimizations%20on%20Latency%20in%20Edge%20Clouds&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Zhang,%20Heng&rft.date=2024-10-01&rft.volume=12&rft.issue=4&rft.spage=1218&rft.epage=1231&rft.pages=1218-1231&rft.issn=2168-7161&rft.eissn=2372-0018&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2024.3452094&rft_dat=%3Cproquest_RIE%3E3141614518%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141614518&rft_id=info:pmid/&rft_ieee_id=10660479&rfr_iscdi=true |