Large-Scale Measurements and Optimizations on Latency in Edge Clouds

The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2024-10, Vol.12 (4), p.1218-1231
Hauptverfasser: Zhang, Heng, Huang, Shaoyuan, Xu, Mengwei, Guo, Deke, Wang, Xiaofei, Wang, Xin, Leung, Victor C. M., Wang, Wenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1231
container_issue 4
container_start_page 1218
container_title IEEE transactions on cloud computing
container_volume 12
creator Zhang, Heng
Huang, Shaoyuan
Xu, Mengwei
Guo, Deke
Wang, Xiaofei
Wang, Xin
Leung, Victor C. M.
Wang, Wenyu
description The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.
doi_str_mv 10.1109/TCC.2024.3452094
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3141614518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10660479</ieee_id><sourcerecordid>3141614518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-60fd7766fc92ec980ebc5727a6762d47f14581493496c21c57fbe0e866bed72f3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EElXpzsBgiTnF5zh2PKJQPqSgDpTZcp1Llap1ip0M5a_HVTtwy510793T_Qi5BzYHYPppVVVzzriY56LgTIsrMuG54hljUF6nGWSZKZBwS2YxblmqsgANekJeahs2mH05u0P6iTaOAffoh0itb-jyMHT77tcOXe8j7T2t7YDeHWnn6aLZIK12_djEO3LT2l3E2aVPyffrYlW9Z_Xy7aN6rjMHqhgyydpGKSlbpzk6XTJcu0JxZaWSvBGqBVGUIHQutHQc0q5dI8NSyjU2irf5lDye7x5C_zNiHMy2H4NPkSYHkf4TBZRJxc4qF_oYA7bmELq9DUcDzJxwmYTLnHCZC65keThbOkT8J5eSCaXzPxs7ZGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141614518</pqid></control><display><type>article</type><title>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Heng ; Huang, Shaoyuan ; Xu, Mengwei ; Guo, Deke ; Wang, Xiaofei ; Wang, Xin ; Leung, Victor C. M. ; Wang, Wenyu</creator><creatorcontrib>Zhang, Heng ; Huang, Shaoyuan ; Xu, Mengwei ; Guo, Deke ; Wang, Xiaofei ; Wang, Xin ; Leung, Victor C. M. ; Wang, Wenyu</creatorcontrib><description>The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2024.3452094</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; edge clouds ; Edge computing ; Fluctuations ; latnecy optimization ; Network latency ; Optimization ; Performance evaluation ; Prototypes ; Quality of service ; Quality of service architectures ; Real-world dataset collection ; Servers ; spatial-temporal modeling ; Spatiotemporal data</subject><ispartof>IEEE transactions on cloud computing, 2024-10, Vol.12 (4), p.1218-1231</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-60fd7766fc92ec980ebc5727a6762d47f14581493496c21c57fbe0e866bed72f3</cites><orcidid>0000-0002-7223-1030 ; 0000-0003-4894-5540 ; 0000-0003-4874-6162 ; 0000-0002-4091-6457 ; 0000-0001-6271-6993 ; 0000-0001-9651-0651 ; 0000-0003-3529-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10660479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10660479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Huang, Shaoyuan</creatorcontrib><creatorcontrib>Xu, Mengwei</creatorcontrib><creatorcontrib>Guo, Deke</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><creatorcontrib>Wang, Wenyu</creatorcontrib><title>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.</description><subject>Cloud computing</subject><subject>edge clouds</subject><subject>Edge computing</subject><subject>Fluctuations</subject><subject>latnecy optimization</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Prototypes</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>Real-world dataset collection</subject><subject>Servers</subject><subject>spatial-temporal modeling</subject><subject>Spatiotemporal data</subject><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EElXpzsBgiTnF5zh2PKJQPqSgDpTZcp1Llap1ip0M5a_HVTtwy510793T_Qi5BzYHYPppVVVzzriY56LgTIsrMuG54hljUF6nGWSZKZBwS2YxblmqsgANekJeahs2mH05u0P6iTaOAffoh0itb-jyMHT77tcOXe8j7T2t7YDeHWnn6aLZIK12_djEO3LT2l3E2aVPyffrYlW9Z_Xy7aN6rjMHqhgyydpGKSlbpzk6XTJcu0JxZaWSvBGqBVGUIHQutHQc0q5dI8NSyjU2irf5lDye7x5C_zNiHMy2H4NPkSYHkf4TBZRJxc4qF_oYA7bmELq9DUcDzJxwmYTLnHCZC65keThbOkT8J5eSCaXzPxs7ZGA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Heng</creator><creator>Huang, Shaoyuan</creator><creator>Xu, Mengwei</creator><creator>Guo, Deke</creator><creator>Wang, Xiaofei</creator><creator>Wang, Xin</creator><creator>Leung, Victor C. M.</creator><creator>Wang, Wenyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7223-1030</orcidid><orcidid>https://orcid.org/0000-0003-4894-5540</orcidid><orcidid>https://orcid.org/0000-0003-4874-6162</orcidid><orcidid>https://orcid.org/0000-0002-4091-6457</orcidid><orcidid>https://orcid.org/0000-0001-6271-6993</orcidid><orcidid>https://orcid.org/0000-0001-9651-0651</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid></search><sort><creationdate>20241001</creationdate><title>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</title><author>Zhang, Heng ; Huang, Shaoyuan ; Xu, Mengwei ; Guo, Deke ; Wang, Xiaofei ; Wang, Xin ; Leung, Victor C. M. ; Wang, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-60fd7766fc92ec980ebc5727a6762d47f14581493496c21c57fbe0e866bed72f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>edge clouds</topic><topic>Edge computing</topic><topic>Fluctuations</topic><topic>latnecy optimization</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Prototypes</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>Real-world dataset collection</topic><topic>Servers</topic><topic>spatial-temporal modeling</topic><topic>Spatiotemporal data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Huang, Shaoyuan</creatorcontrib><creatorcontrib>Xu, Mengwei</creatorcontrib><creatorcontrib>Guo, Deke</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Leung, Victor C. M.</creatorcontrib><creatorcontrib>Wang, Wenyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Heng</au><au>Huang, Shaoyuan</au><au>Xu, Mengwei</au><au>Guo, Deke</au><au>Wang, Xiaofei</au><au>Wang, Xin</au><au>Leung, Victor C. M.</au><au>Wang, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Measurements and Optimizations on Latency in Edge Clouds</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><spage>1218</spage><epage>1231</epage><pages>1218-1231</pages><issn>2168-7161</issn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>The emergence of next-generation latency-critical applications places strict requirements on network latency and stability. Edge cloud, an instantiated paradigm for edge computing, is gaining more and more attention due to its benefits of low latency. In this work, we make an in-depth investigation into the network QoS, especially end-to-end latency, at both spatial and temporal dimensions on a nationwide edge computing platform. Through the measurements, we collect a multi-variable large-scale real-world dataset on latency. We then quantify how the spatial-temporal factors affect the end-to-end latency, and verify the predictability of end-to-end latency. The results reveal the limitation of centralized clouds and illustrate how could edge clouds provide low and stable latency. Our results also point out that existing edge clouds merely increase the density of servers and ignore spatial-temporal factors, so they still suffer from high latency and fluctuations. Based on a quantified latency impact factor, we have proposed several optimization strategies for edge cloud latency and validated their effectiveness. We also propose a robust prototype edge cloud model based on lessons we learn from the measurement and evaluate its performance in the production environment. Evaluation result shows that edge clouds achieve 84.1% latency reduction with 0.5 ms latency fluctuation and 73.3% QoS improvement compared with the centralized clouds.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2024.3452094</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7223-1030</orcidid><orcidid>https://orcid.org/0000-0003-4894-5540</orcidid><orcidid>https://orcid.org/0000-0003-4874-6162</orcidid><orcidid>https://orcid.org/0000-0002-4091-6457</orcidid><orcidid>https://orcid.org/0000-0001-6271-6993</orcidid><orcidid>https://orcid.org/0000-0001-9651-0651</orcidid><orcidid>https://orcid.org/0000-0003-3529-2640</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2024-10, Vol.12 (4), p.1218-1231
issn 2168-7161
2372-0018
language eng
recordid cdi_proquest_journals_3141614518
source IEEE Electronic Library (IEL)
subjects Cloud computing
edge clouds
Edge computing
Fluctuations
latnecy optimization
Network latency
Optimization
Performance evaluation
Prototypes
Quality of service
Quality of service architectures
Real-world dataset collection
Servers
spatial-temporal modeling
Spatiotemporal data
title Large-Scale Measurements and Optimizations on Latency in Edge Clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Measurements%20and%20Optimizations%20on%20Latency%20in%20Edge%20Clouds&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Zhang,%20Heng&rft.date=2024-10-01&rft.volume=12&rft.issue=4&rft.spage=1218&rft.epage=1231&rft.pages=1218-1231&rft.issn=2168-7161&rft.eissn=2372-0018&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2024.3452094&rft_dat=%3Cproquest_RIE%3E3141614518%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141614518&rft_id=info:pmid/&rft_ieee_id=10660479&rfr_iscdi=true