Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach
In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes of...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.178127-178141 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178141 |
---|---|
container_issue | |
container_start_page | 178127 |
container_title | IEEE access |
container_volume | 12 |
creator | Pan, Weiwei Zhou, Mian Wang, Jifeng Su, Jionglong Stefanidis, Angelos |
description | In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain 81,000 images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly. |
doi_str_mv | 10.1109/ACCESS.2024.3506827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3141612367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10767702</ieee_id><doaj_id>oai_doaj_org_article_0ef094614ca54474950bde33980ad31d</doaj_id><sourcerecordid>3141612367</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1607-9d4224adf0ebbbce076596a8bf42e9aa5806b6b904c9ff4b24794bbb534e5e5e3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhosgKOov0EPBc9d8p_FWil-w4GH1XCbNdM1Sm5p0Bf-90RVnDgMvz7zzURSXlKwoJeamadu7zWbFCBMrLomqmT4qThlVpuKSq5PiIqUdyVFnSerTon-d0n7G-OkTurId92nB6Kdt6afyPoTFwjiWzQTjV_LptmzKNowhVhvcvuO0wOLDVMLkyrXfvi0_fY2D-U9v5jkG6N_Oi-MBxoQXf_WseL2_e2kfq_Xzw1PbrCtHFdGVcYIxAW4gaK3tkWgljYLaDoKhAZA1UVZZQ0RvhkFYJrQRmZRcoMzJz4qng68LsOvm6N8hfnUBfPcrhLjtIC6-H7EjOBAjFBU9SCG0MJJYh5ybmoDj1GWv64NXPuFjj2npdmEf8x9Sx6mgijKudKauDpRHxP-JNG-uNWH8GzCZeac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141612367</pqid></control><display><type>article</type><title>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pan, Weiwei ; Zhou, Mian ; Wang, Jifeng ; Su, Jionglong ; Stefanidis, Angelos</creator><creatorcontrib>Pan, Weiwei ; Zhou, Mian ; Wang, Jifeng ; Su, Jionglong ; Stefanidis, Angelos</creatorcontrib><description>In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain <inline-formula> <tex-math notation="LaTeX">81,000 </tex-math></inline-formula> images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3506827</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Clustering ; Clustering methods ; Color ; Datasets ; Feature extraction ; Football ; Football analysis ; Illumination ; illumination equalization ; Image color analysis ; Image edge detection ; Image enhancement ; Labeling ; Lighting ; Object detection ; shadow removal ; Shadows ; Sports ; Statistical analysis ; team affiliation ; unsupervised clustering</subject><ispartof>IEEE access, 2024, Vol.12, p.178127-178141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-0083-4270 ; 0000-0003-2514-4433 ; 0000-0002-4703-8765 ; 0000-0001-5360-6493 ; 0009-0003-2130-664X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10767702$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pan, Weiwei</creatorcontrib><creatorcontrib>Zhou, Mian</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Stefanidis, Angelos</creatorcontrib><title>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain <inline-formula> <tex-math notation="LaTeX">81,000 </tex-math></inline-formula> images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.</description><subject>Accuracy</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Color</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Football</subject><subject>Football analysis</subject><subject>Illumination</subject><subject>illumination equalization</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Labeling</subject><subject>Lighting</subject><subject>Object detection</subject><subject>shadow removal</subject><subject>Shadows</subject><subject>Sports</subject><subject>Statistical analysis</subject><subject>team affiliation</subject><subject>unsupervised clustering</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1LxDAQhosgKOov0EPBc9d8p_FWil-w4GH1XCbNdM1Sm5p0Bf-90RVnDgMvz7zzURSXlKwoJeamadu7zWbFCBMrLomqmT4qThlVpuKSq5PiIqUdyVFnSerTon-d0n7G-OkTurId92nB6Kdt6afyPoTFwjiWzQTjV_LptmzKNowhVhvcvuO0wOLDVMLkyrXfvi0_fY2D-U9v5jkG6N_Oi-MBxoQXf_WseL2_e2kfq_Xzw1PbrCtHFdGVcYIxAW4gaK3tkWgljYLaDoKhAZA1UVZZQ0RvhkFYJrQRmZRcoMzJz4qng68LsOvm6N8hfnUBfPcrhLjtIC6-H7EjOBAjFBU9SCG0MJJYh5ybmoDj1GWv64NXPuFjj2npdmEf8x9Sx6mgijKudKauDpRHxP-JNG-uNWH8GzCZeac</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pan, Weiwei</creator><creator>Zhou, Mian</creator><creator>Wang, Jifeng</creator><creator>Su, Jionglong</creator><creator>Stefanidis, Angelos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-0083-4270</orcidid><orcidid>https://orcid.org/0000-0003-2514-4433</orcidid><orcidid>https://orcid.org/0000-0002-4703-8765</orcidid><orcidid>https://orcid.org/0000-0001-5360-6493</orcidid><orcidid>https://orcid.org/0009-0003-2130-664X</orcidid></search><sort><creationdate>2024</creationdate><title>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</title><author>Pan, Weiwei ; Zhou, Mian ; Wang, Jifeng ; Su, Jionglong ; Stefanidis, Angelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1607-9d4224adf0ebbbce076596a8bf42e9aa5806b6b904c9ff4b24794bbb534e5e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Color</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Football</topic><topic>Football analysis</topic><topic>Illumination</topic><topic>illumination equalization</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Labeling</topic><topic>Lighting</topic><topic>Object detection</topic><topic>shadow removal</topic><topic>Shadows</topic><topic>Sports</topic><topic>Statistical analysis</topic><topic>team affiliation</topic><topic>unsupervised clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Weiwei</creatorcontrib><creatorcontrib>Zhou, Mian</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Stefanidis, Angelos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Weiwei</au><au>Zhou, Mian</au><au>Wang, Jifeng</au><au>Su, Jionglong</au><au>Stefanidis, Angelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>178127</spage><epage>178141</epage><pages>178127-178141</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain <inline-formula> <tex-math notation="LaTeX">81,000 </tex-math></inline-formula> images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3506827</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0001-0083-4270</orcidid><orcidid>https://orcid.org/0000-0003-2514-4433</orcidid><orcidid>https://orcid.org/0000-0002-4703-8765</orcidid><orcidid>https://orcid.org/0000-0001-5360-6493</orcidid><orcidid>https://orcid.org/0009-0003-2130-664X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.178127-178141 |
issn | 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3141612367 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Clustering Clustering methods Color Datasets Feature extraction Football Football analysis Illumination illumination equalization Image color analysis Image edge detection Image enhancement Labeling Lighting Object detection shadow removal Shadows Sports Statistical analysis team affiliation unsupervised clustering |
title | Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Clustering%20in%20Football%20Analysis:%20A%20Color-Segmentation%20and%20Lighting%20Adaptation%20Approach&rft.jtitle=IEEE%20access&rft.au=Pan,%20Weiwei&rft.date=2024&rft.volume=12&rft.spage=178127&rft.epage=178141&rft.pages=178127-178141&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3506827&rft_dat=%3Cproquest_ieee_%3E3141612367%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141612367&rft_id=info:pmid/&rft_ieee_id=10767702&rft_doaj_id=oai_doaj_org_article_0ef094614ca54474950bde33980ad31d&rfr_iscdi=true |