Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach

In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.178127-178141
Hauptverfasser: Pan, Weiwei, Zhou, Mian, Wang, Jifeng, Su, Jionglong, Stefanidis, Angelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178141
container_issue
container_start_page 178127
container_title IEEE access
container_volume 12
creator Pan, Weiwei
Zhou, Mian
Wang, Jifeng
Su, Jionglong
Stefanidis, Angelos
description In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain 81,000 images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.
doi_str_mv 10.1109/ACCESS.2024.3506827
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3141612367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10767702</ieee_id><doaj_id>oai_doaj_org_article_0ef094614ca54474950bde33980ad31d</doaj_id><sourcerecordid>3141612367</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1607-9d4224adf0ebbbce076596a8bf42e9aa5806b6b904c9ff4b24794bbb534e5e5e3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhosgKOov0EPBc9d8p_FWil-w4GH1XCbNdM1Sm5p0Bf-90RVnDgMvz7zzURSXlKwoJeamadu7zWbFCBMrLomqmT4qThlVpuKSq5PiIqUdyVFnSerTon-d0n7G-OkTurId92nB6Kdt6afyPoTFwjiWzQTjV_LptmzKNowhVhvcvuO0wOLDVMLkyrXfvi0_fY2D-U9v5jkG6N_Oi-MBxoQXf_WseL2_e2kfq_Xzw1PbrCtHFdGVcYIxAW4gaK3tkWgljYLaDoKhAZA1UVZZQ0RvhkFYJrQRmZRcoMzJz4qng68LsOvm6N8hfnUBfPcrhLjtIC6-H7EjOBAjFBU9SCG0MJJYh5ybmoDj1GWv64NXPuFjj2npdmEf8x9Sx6mgijKudKauDpRHxP-JNG-uNWH8GzCZeac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141612367</pqid></control><display><type>article</type><title>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pan, Weiwei ; Zhou, Mian ; Wang, Jifeng ; Su, Jionglong ; Stefanidis, Angelos</creator><creatorcontrib>Pan, Weiwei ; Zhou, Mian ; Wang, Jifeng ; Su, Jionglong ; Stefanidis, Angelos</creatorcontrib><description>In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;81,000 &lt;/tex-math&gt;&lt;/inline-formula&gt; images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3506827</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Clustering ; Clustering methods ; Color ; Datasets ; Feature extraction ; Football ; Football analysis ; Illumination ; illumination equalization ; Image color analysis ; Image edge detection ; Image enhancement ; Labeling ; Lighting ; Object detection ; shadow removal ; Shadows ; Sports ; Statistical analysis ; team affiliation ; unsupervised clustering</subject><ispartof>IEEE access, 2024, Vol.12, p.178127-178141</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-0083-4270 ; 0000-0003-2514-4433 ; 0000-0002-4703-8765 ; 0000-0001-5360-6493 ; 0009-0003-2130-664X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10767702$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pan, Weiwei</creatorcontrib><creatorcontrib>Zhou, Mian</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Stefanidis, Angelos</creatorcontrib><title>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;81,000 &lt;/tex-math&gt;&lt;/inline-formula&gt; images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.</description><subject>Accuracy</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Color</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Football</subject><subject>Football analysis</subject><subject>Illumination</subject><subject>illumination equalization</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Labeling</subject><subject>Lighting</subject><subject>Object detection</subject><subject>shadow removal</subject><subject>Shadows</subject><subject>Sports</subject><subject>Statistical analysis</subject><subject>team affiliation</subject><subject>unsupervised clustering</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1LxDAQhosgKOov0EPBc9d8p_FWil-w4GH1XCbNdM1Sm5p0Bf-90RVnDgMvz7zzURSXlKwoJeamadu7zWbFCBMrLomqmT4qThlVpuKSq5PiIqUdyVFnSerTon-d0n7G-OkTurId92nB6Kdt6afyPoTFwjiWzQTjV_LptmzKNowhVhvcvuO0wOLDVMLkyrXfvi0_fY2D-U9v5jkG6N_Oi-MBxoQXf_WseL2_e2kfq_Xzw1PbrCtHFdGVcYIxAW4gaK3tkWgljYLaDoKhAZA1UVZZQ0RvhkFYJrQRmZRcoMzJz4qng68LsOvm6N8hfnUBfPcrhLjtIC6-H7EjOBAjFBU9SCG0MJJYh5ybmoDj1GWv64NXPuFjj2npdmEf8x9Sx6mgijKudKauDpRHxP-JNG-uNWH8GzCZeac</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pan, Weiwei</creator><creator>Zhou, Mian</creator><creator>Wang, Jifeng</creator><creator>Su, Jionglong</creator><creator>Stefanidis, Angelos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-0083-4270</orcidid><orcidid>https://orcid.org/0000-0003-2514-4433</orcidid><orcidid>https://orcid.org/0000-0002-4703-8765</orcidid><orcidid>https://orcid.org/0000-0001-5360-6493</orcidid><orcidid>https://orcid.org/0009-0003-2130-664X</orcidid></search><sort><creationdate>2024</creationdate><title>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</title><author>Pan, Weiwei ; Zhou, Mian ; Wang, Jifeng ; Su, Jionglong ; Stefanidis, Angelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1607-9d4224adf0ebbbce076596a8bf42e9aa5806b6b904c9ff4b24794bbb534e5e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Color</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Football</topic><topic>Football analysis</topic><topic>Illumination</topic><topic>illumination equalization</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Labeling</topic><topic>Lighting</topic><topic>Object detection</topic><topic>shadow removal</topic><topic>Shadows</topic><topic>Sports</topic><topic>Statistical analysis</topic><topic>team affiliation</topic><topic>unsupervised clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Weiwei</creatorcontrib><creatorcontrib>Zhou, Mian</creatorcontrib><creatorcontrib>Wang, Jifeng</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Stefanidis, Angelos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Weiwei</au><au>Zhou, Mian</au><au>Wang, Jifeng</au><au>Su, Jionglong</au><au>Stefanidis, Angelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>178127</spage><epage>178141</epage><pages>178127-178141</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In football match videos, team affiliation is typically identified using unsupervised methods, which distinguish individuals based on unique features. These methods reduce the effort needed for dataset labeling compared to supervised approaches. However, uneven lighting in outdoor football scenes often compromises accuracy. This paper introduces a clustering method leveraging color segmentation combined with illumination equalization to address issues such as large shadows and unknown uniform designs. This method distributes personnel information-distinguishing team A, team B, goalkeepers, and referees-relying solely on color features to achieve precise clustering. Compared to established unsupervised methods, our approach demonstrated superior performance on benchmarks including the Sn-gamestate and Soccernet-Tracing datasets, which contain &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;81,000 &lt;/tex-math&gt;&lt;/inline-formula&gt; images. Additionally, we developed a shadow correction and color enhancement technique tailored for unevenly lit football scenes. Experimental results show that this method significantly improves clustering accuracy in challenging lighting conditions, boosting the Adjusted Rand Index (ARI) by at least 0.2 and enhancing color restoration markedly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3506827</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0001-0083-4270</orcidid><orcidid>https://orcid.org/0000-0003-2514-4433</orcidid><orcidid>https://orcid.org/0000-0002-4703-8765</orcidid><orcidid>https://orcid.org/0000-0001-5360-6493</orcidid><orcidid>https://orcid.org/0009-0003-2130-664X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.178127-178141
issn 2169-3536
language eng
recordid cdi_proquest_journals_3141612367
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Clustering
Clustering methods
Color
Datasets
Feature extraction
Football
Football analysis
Illumination
illumination equalization
Image color analysis
Image edge detection
Image enhancement
Labeling
Lighting
Object detection
shadow removal
Shadows
Sports
Statistical analysis
team affiliation
unsupervised clustering
title Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Clustering%20in%20Football%20Analysis:%20A%20Color-Segmentation%20and%20Lighting%20Adaptation%20Approach&rft.jtitle=IEEE%20access&rft.au=Pan,%20Weiwei&rft.date=2024&rft.volume=12&rft.spage=178127&rft.epage=178141&rft.pages=178127-178141&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3506827&rft_dat=%3Cproquest_ieee_%3E3141612367%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141612367&rft_id=info:pmid/&rft_ieee_id=10767702&rft_doaj_id=oai_doaj_org_article_0ef094614ca54474950bde33980ad31d&rfr_iscdi=true