Age of Information Aware Trajectory Planning of UAV
This paper investigates the planning of Unmanned aerial vehicles (UAVs) trajectory in UAV-assisted Internet of Things (IoT) networks with a massive number of IoT devices (IoTDs). Existing UAV-assisted IoT network data collection schemes mostly focus on optimizing energy consumption and data collecti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive communications and networking 2024-01, Vol.10 (6), p.2344-2356 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2356 |
---|---|
container_issue | 6 |
container_start_page | 2344 |
container_title | IEEE transactions on cognitive communications and networking |
container_volume | 10 |
creator | Pan, Junnan Li, Yun Chai, Rong Xia, Shichao Zuo, Linli |
description | This paper investigates the planning of Unmanned aerial vehicles (UAVs) trajectory in UAV-assisted Internet of Things (IoT) networks with a massive number of IoT devices (IoTDs). Existing UAV-assisted IoT network data collection schemes mostly focus on optimizing energy consumption and data collection throughput, while neglecting the temporal value of data collection. With the assistance of the age of information (AoI), the average AoI of data collected by the UAV from IoTDs is minimized to enhance information freshness. To strike a balance between trajectory planning and information freshness, a two-stage artificial intelligence (AI) algorithm is proposed in this paper. Firstly, to tackle the issue of prolonged flight time caused by the UAV sequentially collecting data from IoTDs, an improved clustering algorithm is introduced to determine the cluster centers of IoTDs. Secondly, considering that the UAV lacks prior knowledge of the IoT network environment, the AoI minimization problem is reformulated as a Markov decision process (MDP). A neural network algorithm based on twin-delayed deep deterministic policy gradient (TD3) is employed to optimize UAV trajectory. Simulation results show that the proposed algorithm is superior to the benchmark algorithms, particularly in scenarios involving a massive number of IoTDs. |
doi_str_mv | 10.1109/TCCN.2024.3412073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3141610624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552712</ieee_id><sourcerecordid>3141610624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c914-956951858fc75966fa90f34d21f03a2ccd65ea38ac54023c385fb85ff57d51913</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoSHNDyh0MHR2qtNJsjUa049AaDu4XYWqSMEmsVLZoeTf18YZMhzvDc97Bw8h90CXAFQ9VWX5vmSU8SVyYDTDKzJjiCzNMoTri_2WLLquoZSCZFLmfEaw2Lok-GTV-hD3pq9DmxR_JrqkiqZxtg_xlHzuTNvW7XYEv4rvO3Ljza5zi3POSfXyXJVv6frjdVUW69Qq4KkSUgnIRe5tJpSU3ijqkW8YeIqGWbuRwhnMjRWcMrSYC_8zjBfZRoACnJPH6ewhht-j63rdhGNsh48agYMEKhkfKJgoG0PXRef1IdZ7E08aqB7t6NGOHu3os52h8zB1aufcBS8Ey4DhP-0SXWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141610624</pqid></control><display><type>article</type><title>Age of Information Aware Trajectory Planning of UAV</title><source>IEEE Xplore</source><creator>Pan, Junnan ; Li, Yun ; Chai, Rong ; Xia, Shichao ; Zuo, Linli</creator><creatorcontrib>Pan, Junnan ; Li, Yun ; Chai, Rong ; Xia, Shichao ; Zuo, Linli</creatorcontrib><description>This paper investigates the planning of Unmanned aerial vehicles (UAVs) trajectory in UAV-assisted Internet of Things (IoT) networks with a massive number of IoT devices (IoTDs). Existing UAV-assisted IoT network data collection schemes mostly focus on optimizing energy consumption and data collection throughput, while neglecting the temporal value of data collection. With the assistance of the age of information (AoI), the average AoI of data collected by the UAV from IoTDs is minimized to enhance information freshness. To strike a balance between trajectory planning and information freshness, a two-stage artificial intelligence (AI) algorithm is proposed in this paper. Firstly, to tackle the issue of prolonged flight time caused by the UAV sequentially collecting data from IoTDs, an improved clustering algorithm is introduced to determine the cluster centers of IoTDs. Secondly, considering that the UAV lacks prior knowledge of the IoT network environment, the AoI minimization problem is reformulated as a Markov decision process (MDP). A neural network algorithm based on twin-delayed deep deterministic policy gradient (TD3) is employed to optimize UAV trajectory. Simulation results show that the proposed algorithm is superior to the benchmark algorithms, particularly in scenarios involving a massive number of IoTDs.</description><identifier>ISSN: 2332-7731</identifier><identifier>EISSN: 2332-7731</identifier><identifier>DOI: 10.1109/TCCN.2024.3412073</identifier><identifier>CODEN: ITCCG7</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>age of information (AoI) ; Algorithms ; Artificial intelligence ; Autonomous aerial vehicles ; Clustering ; Clustering algorithms ; Data collection ; deep reinforcement learning (DRL) ; Energy consumption ; Flight time ; Freshness ; Internet of Things ; Internet of Things (IoT) ; Markov processes ; Neural networks ; Quality of service ; Real-time systems ; Trajectory ; Trajectory optimization ; Trajectory planning ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on cognitive communications and networking, 2024-01, Vol.10 (6), p.2344-2356</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0957-7792 ; 0009-0003-2913-6577 ; 0000-0003-2418-9736 ; 0000-0001-8477-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10552712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Junnan</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chai, Rong</creatorcontrib><creatorcontrib>Xia, Shichao</creatorcontrib><creatorcontrib>Zuo, Linli</creatorcontrib><title>Age of Information Aware Trajectory Planning of UAV</title><title>IEEE transactions on cognitive communications and networking</title><addtitle>TCCN</addtitle><description>This paper investigates the planning of Unmanned aerial vehicles (UAVs) trajectory in UAV-assisted Internet of Things (IoT) networks with a massive number of IoT devices (IoTDs). Existing UAV-assisted IoT network data collection schemes mostly focus on optimizing energy consumption and data collection throughput, while neglecting the temporal value of data collection. With the assistance of the age of information (AoI), the average AoI of data collected by the UAV from IoTDs is minimized to enhance information freshness. To strike a balance between trajectory planning and information freshness, a two-stage artificial intelligence (AI) algorithm is proposed in this paper. Firstly, to tackle the issue of prolonged flight time caused by the UAV sequentially collecting data from IoTDs, an improved clustering algorithm is introduced to determine the cluster centers of IoTDs. Secondly, considering that the UAV lacks prior knowledge of the IoT network environment, the AoI minimization problem is reformulated as a Markov decision process (MDP). A neural network algorithm based on twin-delayed deep deterministic policy gradient (TD3) is employed to optimize UAV trajectory. Simulation results show that the proposed algorithm is superior to the benchmark algorithms, particularly in scenarios involving a massive number of IoTDs.</description><subject>age of information (AoI)</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data collection</subject><subject>deep reinforcement learning (DRL)</subject><subject>Energy consumption</subject><subject>Flight time</subject><subject>Freshness</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Markov processes</subject><subject>Neural networks</subject><subject>Quality of service</subject><subject>Real-time systems</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>2332-7731</issn><issn>2332-7731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1rwzAQhkVpoSHNDyh0MHR2qtNJsjUa049AaDu4XYWqSMEmsVLZoeTf18YZMhzvDc97Bw8h90CXAFQ9VWX5vmSU8SVyYDTDKzJjiCzNMoTri_2WLLquoZSCZFLmfEaw2Lok-GTV-hD3pq9DmxR_JrqkiqZxtg_xlHzuTNvW7XYEv4rvO3Ljza5zi3POSfXyXJVv6frjdVUW69Qq4KkSUgnIRe5tJpSU3ijqkW8YeIqGWbuRwhnMjRWcMrSYC_8zjBfZRoACnJPH6ewhht-j63rdhGNsh48agYMEKhkfKJgoG0PXRef1IdZ7E08aqB7t6NGOHu3os52h8zB1aufcBS8Ey4DhP-0SXWw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Pan, Junnan</creator><creator>Li, Yun</creator><creator>Chai, Rong</creator><creator>Xia, Shichao</creator><creator>Zuo, Linli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0957-7792</orcidid><orcidid>https://orcid.org/0009-0003-2913-6577</orcidid><orcidid>https://orcid.org/0000-0003-2418-9736</orcidid><orcidid>https://orcid.org/0000-0001-8477-8845</orcidid></search><sort><creationdate>20240101</creationdate><title>Age of Information Aware Trajectory Planning of UAV</title><author>Pan, Junnan ; Li, Yun ; Chai, Rong ; Xia, Shichao ; Zuo, Linli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c914-956951858fc75966fa90f34d21f03a2ccd65ea38ac54023c385fb85ff57d51913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>age of information (AoI)</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data collection</topic><topic>deep reinforcement learning (DRL)</topic><topic>Energy consumption</topic><topic>Flight time</topic><topic>Freshness</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Markov processes</topic><topic>Neural networks</topic><topic>Quality of service</topic><topic>Real-time systems</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Junnan</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chai, Rong</creatorcontrib><creatorcontrib>Xia, Shichao</creatorcontrib><creatorcontrib>Zuo, Linli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on cognitive communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Junnan</au><au>Li, Yun</au><au>Chai, Rong</au><au>Xia, Shichao</au><au>Zuo, Linli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age of Information Aware Trajectory Planning of UAV</atitle><jtitle>IEEE transactions on cognitive communications and networking</jtitle><stitle>TCCN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>2344</spage><epage>2356</epage><pages>2344-2356</pages><issn>2332-7731</issn><eissn>2332-7731</eissn><coden>ITCCG7</coden><abstract>This paper investigates the planning of Unmanned aerial vehicles (UAVs) trajectory in UAV-assisted Internet of Things (IoT) networks with a massive number of IoT devices (IoTDs). Existing UAV-assisted IoT network data collection schemes mostly focus on optimizing energy consumption and data collection throughput, while neglecting the temporal value of data collection. With the assistance of the age of information (AoI), the average AoI of data collected by the UAV from IoTDs is minimized to enhance information freshness. To strike a balance between trajectory planning and information freshness, a two-stage artificial intelligence (AI) algorithm is proposed in this paper. Firstly, to tackle the issue of prolonged flight time caused by the UAV sequentially collecting data from IoTDs, an improved clustering algorithm is introduced to determine the cluster centers of IoTDs. Secondly, considering that the UAV lacks prior knowledge of the IoT network environment, the AoI minimization problem is reformulated as a Markov decision process (MDP). A neural network algorithm based on twin-delayed deep deterministic policy gradient (TD3) is employed to optimize UAV trajectory. Simulation results show that the proposed algorithm is superior to the benchmark algorithms, particularly in scenarios involving a massive number of IoTDs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCCN.2024.3412073</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0957-7792</orcidid><orcidid>https://orcid.org/0009-0003-2913-6577</orcidid><orcidid>https://orcid.org/0000-0003-2418-9736</orcidid><orcidid>https://orcid.org/0000-0001-8477-8845</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7731 |
ispartof | IEEE transactions on cognitive communications and networking, 2024-01, Vol.10 (6), p.2344-2356 |
issn | 2332-7731 2332-7731 |
language | eng |
recordid | cdi_proquest_journals_3141610624 |
source | IEEE Xplore |
subjects | age of information (AoI) Algorithms Artificial intelligence Autonomous aerial vehicles Clustering Clustering algorithms Data collection deep reinforcement learning (DRL) Energy consumption Flight time Freshness Internet of Things Internet of Things (IoT) Markov processes Neural networks Quality of service Real-time systems Trajectory Trajectory optimization Trajectory planning Unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
title | Age of Information Aware Trajectory Planning of UAV |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age%20of%20Information%20Aware%20Trajectory%20Planning%20of%20UAV&rft.jtitle=IEEE%20transactions%20on%20cognitive%20communications%20and%20networking&rft.au=Pan,%20Junnan&rft.date=2024-01-01&rft.volume=10&rft.issue=6&rft.spage=2344&rft.epage=2356&rft.pages=2344-2356&rft.issn=2332-7731&rft.eissn=2332-7731&rft.coden=ITCCG7&rft_id=info:doi/10.1109/TCCN.2024.3412073&rft_dat=%3Cproquest_RIE%3E3141610624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141610624&rft_id=info:pmid/&rft_ieee_id=10552712&rfr_iscdi=true |