Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis
Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cardei, Maria Ahmed, Sabit Chapman, Gretchen Doryab, Afsaneh |
description | Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141257960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141257960</sourcerecordid><originalsourceid>FETCH-proquest_journals_31412579603</originalsourceid><addsrcrecordid>eNqNys0KgkAQAOAlCJLyHRY6C7rrTx1Dig4FQt1lkLVW1LGZtfDt89ADdPou30J4Suso2MVKrYTP3IRhqNJMJYn2xKUASx_LRt4GcBad6QYkaGUB5OzsnaAxlUOa5BVc9bT9Q9ZIMsegw7fpTO_koYd2YssbsayhZeP_XIvt6XjPz8FA-BoNu7LBkebMpY7iSCXZPg31f-sLoUI-CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141257960</pqid></control><display><type>article</type><title>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</title><source>Free E- Journals</source><creator>Cardei, Maria ; Ahmed, Sabit ; Chapman, Gretchen ; Doryab, Afsaneh</creator><creatorcontrib>Cardei, Maria ; Ahmed, Sabit ; Chapman, Gretchen ; Doryab, Afsaneh</creatorcontrib><description>Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Behavior ; Data analysis ; Matching ; Neural networks ; Pattern analysis ; Spatiotemporal data ; Tables (data) ; Trajectory analysis ; Urban planning ; Windows (intervals)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Cardei, Maria</creatorcontrib><creatorcontrib>Ahmed, Sabit</creatorcontrib><creatorcontrib>Chapman, Gretchen</creatorcontrib><creatorcontrib>Doryab, Afsaneh</creatorcontrib><title>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</title><title>arXiv.org</title><description>Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.</description><subject>Artificial neural networks</subject><subject>Behavior</subject><subject>Data analysis</subject><subject>Matching</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Spatiotemporal data</subject><subject>Tables (data)</subject><subject>Trajectory analysis</subject><subject>Urban planning</subject><subject>Windows (intervals)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAQAOAlCJLyHRY6C7rrTx1Dig4FQt1lkLVW1LGZtfDt89ADdPou30J4Suso2MVKrYTP3IRhqNJMJYn2xKUASx_LRt4GcBad6QYkaGUB5OzsnaAxlUOa5BVc9bT9Q9ZIMsegw7fpTO_koYd2YssbsayhZeP_XIvt6XjPz8FA-BoNu7LBkebMpY7iSCXZPg31f-sLoUI-CQ</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Cardei, Maria</creator><creator>Ahmed, Sabit</creator><creator>Chapman, Gretchen</creator><creator>Doryab, Afsaneh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</title><author>Cardei, Maria ; Ahmed, Sabit ; Chapman, Gretchen ; Doryab, Afsaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31412579603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Behavior</topic><topic>Data analysis</topic><topic>Matching</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Spatiotemporal data</topic><topic>Tables (data)</topic><topic>Trajectory analysis</topic><topic>Urban planning</topic><topic>Windows (intervals)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cardei, Maria</creatorcontrib><creatorcontrib>Ahmed, Sabit</creatorcontrib><creatorcontrib>Chapman, Gretchen</creatorcontrib><creatorcontrib>Doryab, Afsaneh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardei, Maria</au><au>Ahmed, Sabit</au><au>Chapman, Gretchen</au><au>Doryab, Afsaneh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141257960 |
source | Free E- Journals |
subjects | Artificial neural networks Behavior Data analysis Matching Neural networks Pattern analysis Spatiotemporal data Tables (data) Trajectory analysis Urban planning Windows (intervals) |
title | Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pairwise%20Spatiotemporal%20Partial%20Trajectory%20Matching%20for%20Co-movement%20Analysis&rft.jtitle=arXiv.org&rft.au=Cardei,%20Maria&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141257960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141257960&rft_id=info:pmid/&rfr_iscdi=true |