Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis

Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Cardei, Maria, Ahmed, Sabit, Chapman, Gretchen, Doryab, Afsaneh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cardei, Maria
Ahmed, Sabit
Chapman, Gretchen
Doryab, Afsaneh
description Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141257960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141257960</sourcerecordid><originalsourceid>FETCH-proquest_journals_31412579603</originalsourceid><addsrcrecordid>eNqNys0KgkAQAOAlCJLyHRY6C7rrTx1Dig4FQt1lkLVW1LGZtfDt89ADdPou30J4Suso2MVKrYTP3IRhqNJMJYn2xKUASx_LRt4GcBad6QYkaGUB5OzsnaAxlUOa5BVc9bT9Q9ZIMsegw7fpTO_koYd2YssbsayhZeP_XIvt6XjPz8FA-BoNu7LBkebMpY7iSCXZPg31f-sLoUI-CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141257960</pqid></control><display><type>article</type><title>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</title><source>Free E- Journals</source><creator>Cardei, Maria ; Ahmed, Sabit ; Chapman, Gretchen ; Doryab, Afsaneh</creator><creatorcontrib>Cardei, Maria ; Ahmed, Sabit ; Chapman, Gretchen ; Doryab, Afsaneh</creatorcontrib><description>Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Behavior ; Data analysis ; Matching ; Neural networks ; Pattern analysis ; Spatiotemporal data ; Tables (data) ; Trajectory analysis ; Urban planning ; Windows (intervals)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Cardei, Maria</creatorcontrib><creatorcontrib>Ahmed, Sabit</creatorcontrib><creatorcontrib>Chapman, Gretchen</creatorcontrib><creatorcontrib>Doryab, Afsaneh</creatorcontrib><title>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</title><title>arXiv.org</title><description>Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.</description><subject>Artificial neural networks</subject><subject>Behavior</subject><subject>Data analysis</subject><subject>Matching</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Spatiotemporal data</subject><subject>Tables (data)</subject><subject>Trajectory analysis</subject><subject>Urban planning</subject><subject>Windows (intervals)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAQAOAlCJLyHRY6C7rrTx1Dig4FQt1lkLVW1LGZtfDt89ADdPou30J4Suso2MVKrYTP3IRhqNJMJYn2xKUASx_LRt4GcBad6QYkaGUB5OzsnaAxlUOa5BVc9bT9Q9ZIMsegw7fpTO_koYd2YssbsayhZeP_XIvt6XjPz8FA-BoNu7LBkebMpY7iSCXZPg31f-sLoUI-CQ</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Cardei, Maria</creator><creator>Ahmed, Sabit</creator><creator>Chapman, Gretchen</creator><creator>Doryab, Afsaneh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</title><author>Cardei, Maria ; Ahmed, Sabit ; Chapman, Gretchen ; Doryab, Afsaneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31412579603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Behavior</topic><topic>Data analysis</topic><topic>Matching</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Spatiotemporal data</topic><topic>Tables (data)</topic><topic>Trajectory analysis</topic><topic>Urban planning</topic><topic>Windows (intervals)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cardei, Maria</creatorcontrib><creatorcontrib>Ahmed, Sabit</creatorcontrib><creatorcontrib>Chapman, Gretchen</creatorcontrib><creatorcontrib>Doryab, Afsaneh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardei, Maria</au><au>Ahmed, Sabit</au><au>Chapman, Gretchen</au><au>Doryab, Afsaneh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Spatiotemporal pairwise movement analysis involves identifying shared geographic-based behaviors between individuals within specific time frames. Traditionally, this task relies on sequence modeling and behavior analysis techniques applied to tabular or video-based data, but these methods often lack interpretability and struggle to capture partial matching. In this paper, we propose a novel method for pairwise spatiotemporal partial trajectory matching that transforms tabular spatiotemporal data into interpretable trajectory images based on specified time windows, allowing for partial trajectory analysis. This approach includes localization of trajectories, checking for spatial overlap, and pairwise matching using a Siamese Neural Network. We evaluate our method on a co-walking classification task, demonstrating its effectiveness in a novel co-behavior identification application. Our model surpasses established methods, achieving an F1-score up to 0.73. Additionally, we explore the method's utility for pair routine pattern analysis in real-world scenarios, providing insights into the frequency, timing, and duration of shared behaviors. This approach offers a powerful, interpretable framework for spatiotemporal behavior analysis, with potential applications in social behavior research, urban planning, and healthcare.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3141257960
source Free E- Journals
subjects Artificial neural networks
Behavior
Data analysis
Matching
Neural networks
Pattern analysis
Spatiotemporal data
Tables (data)
Trajectory analysis
Urban planning
Windows (intervals)
title Pairwise Spatiotemporal Partial Trajectory Matching for Co-movement Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pairwise%20Spatiotemporal%20Partial%20Trajectory%20Matching%20for%20Co-movement%20Analysis&rft.jtitle=arXiv.org&rft.au=Cardei,%20Maria&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141257960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141257960&rft_id=info:pmid/&rfr_iscdi=true