Thermodynamic Theory of Linear Optical and Electro-Optic Properties of Ferroelectrics

Ferroelectric materials underlie key optical technologies in optical communications, integrated optics and quantum computing. Yet, there is a lack of a consistent thermodynamic framework to predict the optical properties of ferroelectrics and the mutual connections among ferroelectric polarization,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Ross, Aiden, Mohamed S M M Ali, Saha, Akash, Zu, Rui, Venkatraman Gopalan, Dabo, Ismaila, Long-Qing, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ross, Aiden
Mohamed S M M Ali
Saha, Akash
Zu, Rui
Venkatraman Gopalan
Dabo, Ismaila
Long-Qing, Chen
description Ferroelectric materials underlie key optical technologies in optical communications, integrated optics and quantum computing. Yet, there is a lack of a consistent thermodynamic framework to predict the optical properties of ferroelectrics and the mutual connections among ferroelectric polarization, optical properties, and optical dispersion. For example, there is no existing thermodynamic model for establishing the relationship between the ferroelectric polarization and the optical properties in the visible spectrum. Here we present a thermodynamic theory of the linear optical and electro-optic properties of ferroelectrics by separating the lattice and electronic contributions to the total polarization. We introduce a biquadratic coupling between the lattice and electronic contributions validated by both first-principles calculations and experimental measurements. As an example, we derive the temperature and wavelength-dependent anisotropic optical properties of BaTiO3, including the full linear optical dielectric tensor and the linear electro-optic (Pockels) effect through multiple ferroelectric phase transitions, which are in excellent agreement with existing experimental data and first principles calculations. This general framework incorporates essentially all optical properties of materials, including coupling between the ionic and electronic order parameters, as well as their dispersion and temperature dependence, and thus offers a powerful theoretical tool for analyzing light-matter interactions in ferroelectrics-based optical devices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141257118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141257118</sourcerecordid><originalsourceid>FETCH-proquest_journals_31412571183</originalsourceid><addsrcrecordid>eNqNysEKgkAUBdAhCJLyHwZaC86MpvtQWgS1sHUM45NGdJ690YV_n0kf0Opy7z0bFkilRJQnUu5Y6H0bx7E8ZTJNVcAe1Quox3p2ureGLw1p5tjwq3Wgid-G0Rrdce1qXnRgRsJo3fidcAAaLfgvL4EIYQXW-APbNrrzEP5yz45lUZ0v0UD4nsCPzxYncsv1VCIRMs2EyNV_6gPU-EDy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141257118</pqid></control><display><type>article</type><title>Thermodynamic Theory of Linear Optical and Electro-Optic Properties of Ferroelectrics</title><source>Free E- Journals</source><creator>Ross, Aiden ; Mohamed S M M Ali ; Saha, Akash ; Zu, Rui ; Venkatraman Gopalan ; Dabo, Ismaila ; Long-Qing, Chen</creator><creatorcontrib>Ross, Aiden ; Mohamed S M M Ali ; Saha, Akash ; Zu, Rui ; Venkatraman Gopalan ; Dabo, Ismaila ; Long-Qing, Chen</creatorcontrib><description>Ferroelectric materials underlie key optical technologies in optical communications, integrated optics and quantum computing. Yet, there is a lack of a consistent thermodynamic framework to predict the optical properties of ferroelectrics and the mutual connections among ferroelectric polarization, optical properties, and optical dispersion. For example, there is no existing thermodynamic model for establishing the relationship between the ferroelectric polarization and the optical properties in the visible spectrum. Here we present a thermodynamic theory of the linear optical and electro-optic properties of ferroelectrics by separating the lattice and electronic contributions to the total polarization. We introduce a biquadratic coupling between the lattice and electronic contributions validated by both first-principles calculations and experimental measurements. As an example, we derive the temperature and wavelength-dependent anisotropic optical properties of BaTiO3, including the full linear optical dielectric tensor and the linear electro-optic (Pockels) effect through multiple ferroelectric phase transitions, which are in excellent agreement with existing experimental data and first principles calculations. This general framework incorporates essentially all optical properties of materials, including coupling between the ionic and electronic order parameters, as well as their dispersion and temperature dependence, and thus offers a powerful theoretical tool for analyzing light-matter interactions in ferroelectrics-based optical devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Barium titanates ; Coupling ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; First principles ; Integrated optics ; Material properties ; Mathematical analysis ; Optical properties ; Optics ; Order parameters ; Phase transitions ; Polarization ; Quantum computing ; Temperature dependence ; Tensors ; Thermodynamic models ; Thermodynamics ; Visible spectrum</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Mohamed S M M Ali</creatorcontrib><creatorcontrib>Saha, Akash</creatorcontrib><creatorcontrib>Zu, Rui</creatorcontrib><creatorcontrib>Venkatraman Gopalan</creatorcontrib><creatorcontrib>Dabo, Ismaila</creatorcontrib><creatorcontrib>Long-Qing, Chen</creatorcontrib><title>Thermodynamic Theory of Linear Optical and Electro-Optic Properties of Ferroelectrics</title><title>arXiv.org</title><description>Ferroelectric materials underlie key optical technologies in optical communications, integrated optics and quantum computing. Yet, there is a lack of a consistent thermodynamic framework to predict the optical properties of ferroelectrics and the mutual connections among ferroelectric polarization, optical properties, and optical dispersion. For example, there is no existing thermodynamic model for establishing the relationship between the ferroelectric polarization and the optical properties in the visible spectrum. Here we present a thermodynamic theory of the linear optical and electro-optic properties of ferroelectrics by separating the lattice and electronic contributions to the total polarization. We introduce a biquadratic coupling between the lattice and electronic contributions validated by both first-principles calculations and experimental measurements. As an example, we derive the temperature and wavelength-dependent anisotropic optical properties of BaTiO3, including the full linear optical dielectric tensor and the linear electro-optic (Pockels) effect through multiple ferroelectric phase transitions, which are in excellent agreement with existing experimental data and first principles calculations. This general framework incorporates essentially all optical properties of materials, including coupling between the ionic and electronic order parameters, as well as their dispersion and temperature dependence, and thus offers a powerful theoretical tool for analyzing light-matter interactions in ferroelectrics-based optical devices.</description><subject>Barium titanates</subject><subject>Coupling</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>First principles</subject><subject>Integrated optics</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Order parameters</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Quantum computing</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Thermodynamic models</subject><subject>Thermodynamics</subject><subject>Visible spectrum</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUBdAhCJLyHwZaC86MpvtQWgS1sHUM45NGdJ690YV_n0kf0Opy7z0bFkilRJQnUu5Y6H0bx7E8ZTJNVcAe1Quox3p2ureGLw1p5tjwq3Wgid-G0Rrdce1qXnRgRsJo3fidcAAaLfgvL4EIYQXW-APbNrrzEP5yz45lUZ0v0UD4nsCPzxYncsv1VCIRMs2EyNV_6gPU-EDy</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Ross, Aiden</creator><creator>Mohamed S M M Ali</creator><creator>Saha, Akash</creator><creator>Zu, Rui</creator><creator>Venkatraman Gopalan</creator><creator>Dabo, Ismaila</creator><creator>Long-Qing, Chen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241204</creationdate><title>Thermodynamic Theory of Linear Optical and Electro-Optic Properties of Ferroelectrics</title><author>Ross, Aiden ; Mohamed S M M Ali ; Saha, Akash ; Zu, Rui ; Venkatraman Gopalan ; Dabo, Ismaila ; Long-Qing, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31412571183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium titanates</topic><topic>Coupling</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>First principles</topic><topic>Integrated optics</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Order parameters</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Quantum computing</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Thermodynamic models</topic><topic>Thermodynamics</topic><topic>Visible spectrum</topic><toplevel>online_resources</toplevel><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Mohamed S M M Ali</creatorcontrib><creatorcontrib>Saha, Akash</creatorcontrib><creatorcontrib>Zu, Rui</creatorcontrib><creatorcontrib>Venkatraman Gopalan</creatorcontrib><creatorcontrib>Dabo, Ismaila</creatorcontrib><creatorcontrib>Long-Qing, Chen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Aiden</au><au>Mohamed S M M Ali</au><au>Saha, Akash</au><au>Zu, Rui</au><au>Venkatraman Gopalan</au><au>Dabo, Ismaila</au><au>Long-Qing, Chen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Thermodynamic Theory of Linear Optical and Electro-Optic Properties of Ferroelectrics</atitle><jtitle>arXiv.org</jtitle><date>2024-12-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Ferroelectric materials underlie key optical technologies in optical communications, integrated optics and quantum computing. Yet, there is a lack of a consistent thermodynamic framework to predict the optical properties of ferroelectrics and the mutual connections among ferroelectric polarization, optical properties, and optical dispersion. For example, there is no existing thermodynamic model for establishing the relationship between the ferroelectric polarization and the optical properties in the visible spectrum. Here we present a thermodynamic theory of the linear optical and electro-optic properties of ferroelectrics by separating the lattice and electronic contributions to the total polarization. We introduce a biquadratic coupling between the lattice and electronic contributions validated by both first-principles calculations and experimental measurements. As an example, we derive the temperature and wavelength-dependent anisotropic optical properties of BaTiO3, including the full linear optical dielectric tensor and the linear electro-optic (Pockels) effect through multiple ferroelectric phase transitions, which are in excellent agreement with existing experimental data and first principles calculations. This general framework incorporates essentially all optical properties of materials, including coupling between the ionic and electronic order parameters, as well as their dispersion and temperature dependence, and thus offers a powerful theoretical tool for analyzing light-matter interactions in ferroelectrics-based optical devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3141257118
source Free E- Journals
subjects Barium titanates
Coupling
Ferroelectric materials
Ferroelectricity
Ferroelectrics
First principles
Integrated optics
Material properties
Mathematical analysis
Optical properties
Optics
Order parameters
Phase transitions
Polarization
Quantum computing
Temperature dependence
Tensors
Thermodynamic models
Thermodynamics
Visible spectrum
title Thermodynamic Theory of Linear Optical and Electro-Optic Properties of Ferroelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Thermodynamic%20Theory%20of%20Linear%20Optical%20and%20Electro-Optic%20Properties%20of%20Ferroelectrics&rft.jtitle=arXiv.org&rft.au=Ross,%20Aiden&rft.date=2024-12-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141257118%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141257118&rft_id=info:pmid/&rfr_iscdi=true