Fast energy decay for damped wave equations with a potential and rotational inertia terms

We consider damped wave equations with a potential and rotational inertia terms. We study the Cauchy problem for this model in the one dimensional Euclidean space and we obtain fast energy decay and L^2-decay of the solution itself as time goes to infinity. Since we are considering this problem in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Ruy Coimbra Charão, Ikehata, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ruy Coimbra Charão
Ikehata, Ryo
description We consider damped wave equations with a potential and rotational inertia terms. We study the Cauchy problem for this model in the one dimensional Euclidean space and we obtain fast energy decay and L^2-decay of the solution itself as time goes to infinity. Since we are considering this problem in the one dimensional space, we have no useful tools such as the Hardy and/or Poincaré inequalities. This causes significant difficulties to derive the decay property of the solution and the energy. A potential term will play a role for compensating these weak points.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141256875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141256875</sourcerecordid><originalsourceid>FETCH-proquest_journals_31412568753</originalsourceid><addsrcrecordid>eNqNjEEOgjAURBsTE4lyh5-4JoGWAnsj8QBuXJkf-WgJtNAWCbe3MR7A1WTmzcyGRVyILKlyzncsdq5L05QXJZdSROxWo_NAmuxzhYYeuEJrLDQ4jNTAgm8Cmmb0ymgHi_IvQBiNJ-0V9oC6AWv8Fwerwk3IwZMd3IFtW-wdxT_ds2N9vp4uyWjNNJPz987MNszcXWR5xmVRlVL81_oA_2tCog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141256875</pqid></control><display><type>article</type><title>Fast energy decay for damped wave equations with a potential and rotational inertia terms</title><source>Free E- Journals</source><creator>Ruy Coimbra Charão ; Ikehata, Ryo</creator><creatorcontrib>Ruy Coimbra Charão ; Ikehata, Ryo</creatorcontrib><description>We consider damped wave equations with a potential and rotational inertia terms. We study the Cauchy problem for this model in the one dimensional Euclidean space and we obtain fast energy decay and L^2-decay of the solution itself as time goes to infinity. Since we are considering this problem in the one dimensional space, we have no useful tools such as the Hardy and/or Poincaré inequalities. This causes significant difficulties to derive the decay property of the solution and the energy. A potential term will play a role for compensating these weak points.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cauchy problems ; Decay ; Euclidean geometry ; Inertia ; Wave equations</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ruy Coimbra Charão</creatorcontrib><creatorcontrib>Ikehata, Ryo</creatorcontrib><title>Fast energy decay for damped wave equations with a potential and rotational inertia terms</title><title>arXiv.org</title><description>We consider damped wave equations with a potential and rotational inertia terms. We study the Cauchy problem for this model in the one dimensional Euclidean space and we obtain fast energy decay and L^2-decay of the solution itself as time goes to infinity. Since we are considering this problem in the one dimensional space, we have no useful tools such as the Hardy and/or Poincaré inequalities. This causes significant difficulties to derive the decay property of the solution and the energy. A potential term will play a role for compensating these weak points.</description><subject>Cauchy problems</subject><subject>Decay</subject><subject>Euclidean geometry</subject><subject>Inertia</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEEOgjAURBsTE4lyh5-4JoGWAnsj8QBuXJkf-WgJtNAWCbe3MR7A1WTmzcyGRVyILKlyzncsdq5L05QXJZdSROxWo_NAmuxzhYYeuEJrLDQ4jNTAgm8Cmmb0ymgHi_IvQBiNJ-0V9oC6AWv8Fwerwk3IwZMd3IFtW-wdxT_ds2N9vp4uyWjNNJPz987MNszcXWR5xmVRlVL81_oA_2tCog</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Ruy Coimbra Charão</creator><creator>Ikehata, Ryo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241204</creationdate><title>Fast energy decay for damped wave equations with a potential and rotational inertia terms</title><author>Ruy Coimbra Charão ; Ikehata, Ryo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31412568753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Decay</topic><topic>Euclidean geometry</topic><topic>Inertia</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruy Coimbra Charão</creatorcontrib><creatorcontrib>Ikehata, Ryo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruy Coimbra Charão</au><au>Ikehata, Ryo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fast energy decay for damped wave equations with a potential and rotational inertia terms</atitle><jtitle>arXiv.org</jtitle><date>2024-12-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider damped wave equations with a potential and rotational inertia terms. We study the Cauchy problem for this model in the one dimensional Euclidean space and we obtain fast energy decay and L^2-decay of the solution itself as time goes to infinity. Since we are considering this problem in the one dimensional space, we have no useful tools such as the Hardy and/or Poincaré inequalities. This causes significant difficulties to derive the decay property of the solution and the energy. A potential term will play a role for compensating these weak points.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3141256875
source Free E- Journals
subjects Cauchy problems
Decay
Euclidean geometry
Inertia
Wave equations
title Fast energy decay for damped wave equations with a potential and rotational inertia terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fast%20energy%20decay%20for%20damped%20wave%20equations%20with%20a%20potential%20and%20rotational%20inertia%20terms&rft.jtitle=arXiv.org&rft.au=Ruy%20Coimbra%20Char%C3%A3o&rft.date=2024-12-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141256875%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141256875&rft_id=info:pmid/&rfr_iscdi=true