Fast and flexible range-separated models for atomistic machine learning

Most atomistic machine learning (ML) models rely on a locality ansatz, and decompose the energy into a sum of short-ranged, atom-centered contributions. This leads to clear limitations when trying to describe problems that are dominated by long-range physical effects - most notably electrostatics. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Loche, Philip, Huguenin-Dumittan, Kevin K, Honarmand, Melika, Xu, Qianjun, Rumiantsev, Egor, Wei Bin How, Langer, Marcel F, Ceriotti, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!