From Words to Workflows: Automating Business Processes

As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Minkova, Laura, Jessica López Espejel, Taki Eddine Toufik Djaidja, Dahhane, Walid, El Hassane Ettifouri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Minkova, Laura
Jessica López Espejel
Taki Eddine Toufik Djaidja
Dahhane, Walid
El Hassane Ettifouri
description As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141255139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141255139</sourcerecordid><originalsourceid>FETCH-proquest_journals_31412551393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcyvKz1UIzy9KKVYoyQcxstNy8suLrRQcS0vycxNLMvPSFZxKizPzUouLFQKK8pOBdGoxDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxuaGALtMjS2NCZOFQDRVTVp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141255139</pqid></control><display><type>article</type><title>From Words to Workflows: Automating Business Processes</title><source>Free E- Journals</source><creator>Minkova, Laura ; Jessica López Espejel ; Taki Eddine Toufik Djaidja ; Dahhane, Walid ; El Hassane Ettifouri</creator><creatorcontrib>Minkova, Laura ; Jessica López Espejel ; Taki Eddine Toufik Djaidja ; Dahhane, Walid ; El Hassane Ettifouri</creatorcontrib><description>As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Decision making ; Generative artificial intelligence ; Large language models ; Task complexity ; Translating</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Minkova, Laura</creatorcontrib><creatorcontrib>Jessica López Espejel</creatorcontrib><creatorcontrib>Taki Eddine Toufik Djaidja</creatorcontrib><creatorcontrib>Dahhane, Walid</creatorcontrib><creatorcontrib>El Hassane Ettifouri</creatorcontrib><title>From Words to Workflows: Automating Business Processes</title><title>arXiv.org</title><description>As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.</description><subject>Automation</subject><subject>Decision making</subject><subject>Generative artificial intelligence</subject><subject>Large language models</subject><subject>Task complexity</subject><subject>Translating</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcyvKz1UIzy9KKVYoyQcxstNy8suLrRQcS0vycxNLMvPSFZxKizPzUouLFQKK8pOBdGoxDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxuaGALtMjS2NCZOFQDRVTVp</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Minkova, Laura</creator><creator>Jessica López Espejel</creator><creator>Taki Eddine Toufik Djaidja</creator><creator>Dahhane, Walid</creator><creator>El Hassane Ettifouri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241204</creationdate><title>From Words to Workflows: Automating Business Processes</title><author>Minkova, Laura ; Jessica López Espejel ; Taki Eddine Toufik Djaidja ; Dahhane, Walid ; El Hassane Ettifouri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31412551393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Decision making</topic><topic>Generative artificial intelligence</topic><topic>Large language models</topic><topic>Task complexity</topic><topic>Translating</topic><toplevel>online_resources</toplevel><creatorcontrib>Minkova, Laura</creatorcontrib><creatorcontrib>Jessica López Espejel</creatorcontrib><creatorcontrib>Taki Eddine Toufik Djaidja</creatorcontrib><creatorcontrib>Dahhane, Walid</creatorcontrib><creatorcontrib>El Hassane Ettifouri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minkova, Laura</au><au>Jessica López Espejel</au><au>Taki Eddine Toufik Djaidja</au><au>Dahhane, Walid</au><au>El Hassane Ettifouri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>From Words to Workflows: Automating Business Processes</atitle><jtitle>arXiv.org</jtitle><date>2024-12-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3141255139
source Free E- Journals
subjects Automation
Decision making
Generative artificial intelligence
Large language models
Task complexity
Translating
title From Words to Workflows: Automating Business Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=From%20Words%20to%20Workflows:%20Automating%20Business%20Processes&rft.jtitle=arXiv.org&rft.au=Minkova,%20Laura&rft.date=2024-12-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141255139%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141255139&rft_id=info:pmid/&rfr_iscdi=true