From Words to Workflows: Automating Business Processes
As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Minkova, Laura Jessica López Espejel Taki Eddine Toufik Djaidja Dahhane, Walid El Hassane Ettifouri |
description | As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141255139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141255139</sourcerecordid><originalsourceid>FETCH-proquest_journals_31412551393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcyvKz1UIzy9KKVYoyQcxstNy8suLrRQcS0vycxNLMvPSFZxKizPzUouLFQKK8pOBdGoxDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxuaGALtMjS2NCZOFQDRVTVp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141255139</pqid></control><display><type>article</type><title>From Words to Workflows: Automating Business Processes</title><source>Free E- Journals</source><creator>Minkova, Laura ; Jessica López Espejel ; Taki Eddine Toufik Djaidja ; Dahhane, Walid ; El Hassane Ettifouri</creator><creatorcontrib>Minkova, Laura ; Jessica López Espejel ; Taki Eddine Toufik Djaidja ; Dahhane, Walid ; El Hassane Ettifouri</creatorcontrib><description>As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Decision making ; Generative artificial intelligence ; Large language models ; Task complexity ; Translating</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Minkova, Laura</creatorcontrib><creatorcontrib>Jessica López Espejel</creatorcontrib><creatorcontrib>Taki Eddine Toufik Djaidja</creatorcontrib><creatorcontrib>Dahhane, Walid</creatorcontrib><creatorcontrib>El Hassane Ettifouri</creatorcontrib><title>From Words to Workflows: Automating Business Processes</title><title>arXiv.org</title><description>As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.</description><subject>Automation</subject><subject>Decision making</subject><subject>Generative artificial intelligence</subject><subject>Large language models</subject><subject>Task complexity</subject><subject>Translating</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcyvKz1UIzy9KKVYoyQcxstNy8suLrRQcS0vycxNLMvPSFZxKizPzUouLFQKK8pOBdGoxDwNrWmJOcSovlOZmUHZzDXH20C0oyi8sTS0uic_KLy3KA0rFGxuaGALtMjS2NCZOFQDRVTVp</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Minkova, Laura</creator><creator>Jessica López Espejel</creator><creator>Taki Eddine Toufik Djaidja</creator><creator>Dahhane, Walid</creator><creator>El Hassane Ettifouri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241204</creationdate><title>From Words to Workflows: Automating Business Processes</title><author>Minkova, Laura ; Jessica López Espejel ; Taki Eddine Toufik Djaidja ; Dahhane, Walid ; El Hassane Ettifouri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31412551393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Decision making</topic><topic>Generative artificial intelligence</topic><topic>Large language models</topic><topic>Task complexity</topic><topic>Translating</topic><toplevel>online_resources</toplevel><creatorcontrib>Minkova, Laura</creatorcontrib><creatorcontrib>Jessica López Espejel</creatorcontrib><creatorcontrib>Taki Eddine Toufik Djaidja</creatorcontrib><creatorcontrib>Dahhane, Walid</creatorcontrib><creatorcontrib>El Hassane Ettifouri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minkova, Laura</au><au>Jessica López Espejel</au><au>Taki Eddine Toufik Djaidja</au><au>Dahhane, Walid</au><au>El Hassane Ettifouri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>From Words to Workflows: Automating Business Processes</atitle><jtitle>arXiv.org</jtitle><date>2024-12-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>As businesses increasingly rely on automation to streamline operations, the limitations of Robotic Process Automation (RPA) have become apparent, particularly its dependence on expert knowledge and inability to handle complex decision-making tasks. Recent advancements in Artificial Intelligence (AI), particularly Generative AI (GenAI) and Large Language Models (LLMs), have paved the way for Intelligent Automation (IA), which integrates cognitive capabilities to overcome the shortcomings of RPA. This paper introduces Text2Workflow, a novel method that automatically generates workflows from natural language user requests. Unlike traditional automation approaches, Text2Workflow offers a generalized solution for automating any business process, translating user inputs into a sequence of executable steps represented in JavaScript Object Notation (JSON) format. Leveraging the decision-making and instruction-following capabilities of LLMs, this method provides a scalable, adaptable framework that enables users to visualize and execute workflows with minimal manual intervention. This research outlines the Text2Workflow methodology and its broader implications for automating complex business processes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141255139 |
source | Free E- Journals |
subjects | Automation Decision making Generative artificial intelligence Large language models Task complexity Translating |
title | From Words to Workflows: Automating Business Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=From%20Words%20to%20Workflows:%20Automating%20Business%20Processes&rft.jtitle=arXiv.org&rft.au=Minkova,%20Laura&rft.date=2024-12-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141255139%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141255139&rft_id=info:pmid/&rfr_iscdi=true |