Machine learning-based 2D model optimization design for fusion target pellets
This paper proposes a machine learning-based method for the optimal design of a two-dimensional model of a fusion target pellet. The optimized design of the 2D model of the fusion target pill based on machine learning includes: parameterization of the fusion target pill, mesh division, construction...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-11, Vol.2906 (1), p.12022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12022 |
container_title | Journal of physics. Conference series |
container_volume | 2906 |
creator | Liu, Pan Wang, Jian Yuan, Zilong |
description | This paper proposes a machine learning-based method for the optimal design of a two-dimensional model of a fusion target pellet. The optimized design of the 2D model of the fusion target pill based on machine learning includes: parameterization of the fusion target pill, mesh division, construction of a database, data dimensionality reduction, construction of a neural network, and genetic algorithm optimization. On the basis of the original 2D model grid of the fusion target, the H-type grid is kept unchanged, only the O-type grid is replaced, and the total number of grid points is kept unchanged, so that the 2D model of the modified fusion target with any modeling parameter can quickly extract the physical parameters at the specified position in the flow field, with better geometrical adaptability, and improve the efficiency of data processing effectively. By combining the principal component analysis method and artificial neural network method to achieve the reconstruction of the flow field of the two-dimensional model of the fusion target, under the premise of guaranteeing the accuracy requirements, reducing the dimension and compression of the computational volume, thus reducing the time-consumption and saving the computational resources, realizing the rapid evaluation of the radiation hydrodynamic performance of the two-dimensional model of the fusion target and the rapid search for the optimization of the two-dimensional model of the fusion target, and providing a new idea for the high-efficient design of the two-dimensional model of the high-performance fusion target. |
doi_str_mv | 10.1088/1742-6596/2906/1/012022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141077297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141077297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2042-707330331abf1d412cd05c08ce7820701e07c49a8a5b8fa1a860209f078979673</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BgPehNpJ0m2So6zf7KKgnkO2TdYs3aYm7UF_vS2VFUFwLjPMvO_M8CB0SuCCgBAp4RlN8pnMUyohT0kKhAKle2iym-zvaiEO0VGMGwDWB5-g5VIXb642uDI61K5eJysdTYnpFd760lTYN63buk_dOl_j0kS3rrH1AdsuDp1Wh7VpcWOqyrTxGB1YXUVz8p2n6PXm-mV-lyweb-_nl4ukoND_wYEz1n9A9MqSMiO0KGFWgCgMFxQ4EAO8yKQWerYSVhMtcqAgLXAhucw5m6KzcW8T_HtnYqs2vgt1f1IxkhHgnMpBxUdVEXyMwVjVBLfV4UMRUAM7NVBRAyE1sFNEjex6Jxudzjc_q_93nf_heniaP_8Wqqa07AtfhHyG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141077297</pqid></control><display><type>article</type><title>Machine learning-based 2D model optimization design for fusion target pellets</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Pan ; Wang, Jian ; Yuan, Zilong</creator><creatorcontrib>Liu, Pan ; Wang, Jian ; Yuan, Zilong</creatorcontrib><description>This paper proposes a machine learning-based method for the optimal design of a two-dimensional model of a fusion target pellet. The optimized design of the 2D model of the fusion target pill based on machine learning includes: parameterization of the fusion target pill, mesh division, construction of a database, data dimensionality reduction, construction of a neural network, and genetic algorithm optimization. On the basis of the original 2D model grid of the fusion target, the H-type grid is kept unchanged, only the O-type grid is replaced, and the total number of grid points is kept unchanged, so that the 2D model of the modified fusion target with any modeling parameter can quickly extract the physical parameters at the specified position in the flow field, with better geometrical adaptability, and improve the efficiency of data processing effectively. By combining the principal component analysis method and artificial neural network method to achieve the reconstruction of the flow field of the two-dimensional model of the fusion target, under the premise of guaranteeing the accuracy requirements, reducing the dimension and compression of the computational volume, thus reducing the time-consumption and saving the computational resources, realizing the rapid evaluation of the radiation hydrodynamic performance of the two-dimensional model of the fusion target and the rapid search for the optimization of the two-dimensional model of the fusion target, and providing a new idea for the high-efficient design of the two-dimensional model of the high-performance fusion target.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2906/1/012022</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Data processing ; Design optimization ; Genetic algorithms ; Machine learning ; Neural networks ; Optimization ; Parameter modification ; Parameterization ; Pellets ; Performance evaluation ; Physical properties ; Principal components analysis ; Two dimensional analysis ; Two dimensional flow ; Two dimensional models</subject><ispartof>Journal of physics. Conference series, 2024-11, Vol.2906 (1), p.12022</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2042-707330331abf1d412cd05c08ce7820701e07c49a8a5b8fa1a860209f078979673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2906/1/012022/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yuan, Zilong</creatorcontrib><title>Machine learning-based 2D model optimization design for fusion target pellets</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper proposes a machine learning-based method for the optimal design of a two-dimensional model of a fusion target pellet. The optimized design of the 2D model of the fusion target pill based on machine learning includes: parameterization of the fusion target pill, mesh division, construction of a database, data dimensionality reduction, construction of a neural network, and genetic algorithm optimization. On the basis of the original 2D model grid of the fusion target, the H-type grid is kept unchanged, only the O-type grid is replaced, and the total number of grid points is kept unchanged, so that the 2D model of the modified fusion target with any modeling parameter can quickly extract the physical parameters at the specified position in the flow field, with better geometrical adaptability, and improve the efficiency of data processing effectively. By combining the principal component analysis method and artificial neural network method to achieve the reconstruction of the flow field of the two-dimensional model of the fusion target, under the premise of guaranteeing the accuracy requirements, reducing the dimension and compression of the computational volume, thus reducing the time-consumption and saving the computational resources, realizing the rapid evaluation of the radiation hydrodynamic performance of the two-dimensional model of the fusion target and the rapid search for the optimization of the two-dimensional model of the fusion target, and providing a new idea for the high-efficient design of the two-dimensional model of the high-performance fusion target.</description><subject>Artificial neural networks</subject><subject>Data processing</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Parameterization</subject><subject>Pellets</subject><subject>Performance evaluation</subject><subject>Physical properties</subject><subject>Principal components analysis</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Two dimensional models</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LxDAQhoMouK7-BgPehNpJ0m2So6zf7KKgnkO2TdYs3aYm7UF_vS2VFUFwLjPMvO_M8CB0SuCCgBAp4RlN8pnMUyohT0kKhAKle2iym-zvaiEO0VGMGwDWB5-g5VIXb642uDI61K5eJysdTYnpFd760lTYN63buk_dOl_j0kS3rrH1AdsuDp1Wh7VpcWOqyrTxGB1YXUVz8p2n6PXm-mV-lyweb-_nl4ukoND_wYEz1n9A9MqSMiO0KGFWgCgMFxQ4EAO8yKQWerYSVhMtcqAgLXAhucw5m6KzcW8T_HtnYqs2vgt1f1IxkhHgnMpBxUdVEXyMwVjVBLfV4UMRUAM7NVBRAyE1sFNEjex6Jxudzjc_q_93nf_heniaP_8Wqqa07AtfhHyG</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Liu, Pan</creator><creator>Wang, Jian</creator><creator>Yuan, Zilong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241101</creationdate><title>Machine learning-based 2D model optimization design for fusion target pellets</title><author>Liu, Pan ; Wang, Jian ; Yuan, Zilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2042-707330331abf1d412cd05c08ce7820701e07c49a8a5b8fa1a860209f078979673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Data processing</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Parameterization</topic><topic>Pellets</topic><topic>Performance evaluation</topic><topic>Physical properties</topic><topic>Principal components analysis</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Yuan, Zilong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Pan</au><au>Wang, Jian</au><au>Yuan, Zilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based 2D model optimization design for fusion target pellets</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>2906</volume><issue>1</issue><spage>12022</spage><pages>12022-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper proposes a machine learning-based method for the optimal design of a two-dimensional model of a fusion target pellet. The optimized design of the 2D model of the fusion target pill based on machine learning includes: parameterization of the fusion target pill, mesh division, construction of a database, data dimensionality reduction, construction of a neural network, and genetic algorithm optimization. On the basis of the original 2D model grid of the fusion target, the H-type grid is kept unchanged, only the O-type grid is replaced, and the total number of grid points is kept unchanged, so that the 2D model of the modified fusion target with any modeling parameter can quickly extract the physical parameters at the specified position in the flow field, with better geometrical adaptability, and improve the efficiency of data processing effectively. By combining the principal component analysis method and artificial neural network method to achieve the reconstruction of the flow field of the two-dimensional model of the fusion target, under the premise of guaranteeing the accuracy requirements, reducing the dimension and compression of the computational volume, thus reducing the time-consumption and saving the computational resources, realizing the rapid evaluation of the radiation hydrodynamic performance of the two-dimensional model of the fusion target and the rapid search for the optimization of the two-dimensional model of the fusion target, and providing a new idea for the high-efficient design of the two-dimensional model of the high-performance fusion target.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2906/1/012022</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-11, Vol.2906 (1), p.12022 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3141077297 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks Data processing Design optimization Genetic algorithms Machine learning Neural networks Optimization Parameter modification Parameterization Pellets Performance evaluation Physical properties Principal components analysis Two dimensional analysis Two dimensional flow Two dimensional models |
title | Machine learning-based 2D model optimization design for fusion target pellets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%202D%20model%20optimization%20design%20for%20fusion%20target%20pellets&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Liu,%20Pan&rft.date=2024-11-01&rft.volume=2906&rft.issue=1&rft.spage=12022&rft.pages=12022-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2906/1/012022&rft_dat=%3Cproquest_cross%3E3141077297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141077297&rft_id=info:pmid/&rfr_iscdi=true |