Interval vertex coloring of cartesian products and strong products of paths
For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval v...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-11, Vol.2905 (1), p.12005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12005 |
container_title | Journal of physics. Conference series |
container_volume | 2905 |
creator | Lai, Jinyu Tian, Shuangliang Jin, Meiqin |
description | For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given. |
doi_str_mv | 10.1088/1742-6596/2905/1/012005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141073022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141073022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2045-e3ba0406cc656a5cc54090e34615a84fe72218900babbd856b59bebddd4e3cb63</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYJ3Qu3JZ9tLGTqnAwX1OiRpqh2zqUk39N-bUpkIgrlJOHnecw4PQqcYLjAURYZzRlLBS5GREniGM8AEgO-hye5nf_cuikN0FMIKgMaTT9Ddou2t36p1srW-tx-JcWvnm_YlcXViVCyFRrVJ5121MX1IVFslofcuArtaJDvVv4ZjdFCrdbAn3_cUPV9fPc1u0uX9fDG7XKaGAOOppVoBA2GM4EJxYziDEixlAnNVsNrmhOCiBNBK66rgQvNSW11VFbPUaEGn6GzsGzd439jQy5Xb-DaOlBQzDDkFQiKVj5TxLgRva9n55k35T4lBDubk4EQOfuRgTmI5motJOiYb1_20_j91_kfq9mH2-BuUXVXTL3aZfgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141073022</pqid></control><display><type>article</type><title>Interval vertex coloring of cartesian products and strong products of paths</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lai, Jinyu ; Tian, Shuangliang ; Jin, Meiqin</creator><creatorcontrib>Lai, Jinyu ; Tian, Shuangliang ; Jin, Meiqin</creatorcontrib><description>For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2905/1/012005</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cartesian coordinates ; Graph coloring</subject><ispartof>Journal of physics. Conference series, 2024-11, Vol.2905 (1), p.12005</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2045-e3ba0406cc656a5cc54090e34615a84fe72218900babbd856b59bebddd4e3cb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2905/1/012005/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Lai, Jinyu</creatorcontrib><creatorcontrib>Tian, Shuangliang</creatorcontrib><creatorcontrib>Jin, Meiqin</creatorcontrib><title>Interval vertex coloring of cartesian products and strong products of paths</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.</description><subject>Cartesian coordinates</subject><subject>Graph coloring</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYJ3Qu3JZ9tLGTqnAwX1OiRpqh2zqUk39N-bUpkIgrlJOHnecw4PQqcYLjAURYZzRlLBS5GREniGM8AEgO-hye5nf_cuikN0FMIKgMaTT9Ddou2t36p1srW-tx-JcWvnm_YlcXViVCyFRrVJ5121MX1IVFslofcuArtaJDvVv4ZjdFCrdbAn3_cUPV9fPc1u0uX9fDG7XKaGAOOppVoBA2GM4EJxYziDEixlAnNVsNrmhOCiBNBK66rgQvNSW11VFbPUaEGn6GzsGzd439jQy5Xb-DaOlBQzDDkFQiKVj5TxLgRva9n55k35T4lBDubk4EQOfuRgTmI5motJOiYb1_20_j91_kfq9mH2-BuUXVXTL3aZfgQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lai, Jinyu</creator><creator>Tian, Shuangliang</creator><creator>Jin, Meiqin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241101</creationdate><title>Interval vertex coloring of cartesian products and strong products of paths</title><author>Lai, Jinyu ; Tian, Shuangliang ; Jin, Meiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2045-e3ba0406cc656a5cc54090e34615a84fe72218900babbd856b59bebddd4e3cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cartesian coordinates</topic><topic>Graph coloring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Jinyu</creatorcontrib><creatorcontrib>Tian, Shuangliang</creatorcontrib><creatorcontrib>Jin, Meiqin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Jinyu</au><au>Tian, Shuangliang</au><au>Jin, Meiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval vertex coloring of cartesian products and strong products of paths</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>2905</volume><issue>1</issue><spage>12005</spage><pages>12005-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2905/1/012005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-11, Vol.2905 (1), p.12005 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3141073022 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Cartesian coordinates Graph coloring |
title | Interval vertex coloring of cartesian products and strong products of paths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20vertex%20coloring%20of%20cartesian%20products%20and%20strong%20products%20of%20paths&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Lai,%20Jinyu&rft.date=2024-11-01&rft.volume=2905&rft.issue=1&rft.spage=12005&rft.pages=12005-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2905/1/012005&rft_dat=%3Cproquest_cross%3E3141073022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141073022&rft_id=info:pmid/&rfr_iscdi=true |