Interval vertex coloring of cartesian products and strong products of paths

For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-11, Vol.2905 (1), p.12005
Hauptverfasser: Lai, Jinyu, Tian, Shuangliang, Jin, Meiqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12005
container_title Journal of physics. Conference series
container_volume 2905
creator Lai, Jinyu
Tian, Shuangliang
Jin, Meiqin
description For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.
doi_str_mv 10.1088/1742-6596/2905/1/012005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141073022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141073022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2045-e3ba0406cc656a5cc54090e34615a84fe72218900babbd856b59bebddd4e3cb63</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYJ3Qu3JZ9tLGTqnAwX1OiRpqh2zqUk39N-bUpkIgrlJOHnecw4PQqcYLjAURYZzRlLBS5GREniGM8AEgO-hye5nf_cuikN0FMIKgMaTT9Ddou2t36p1srW-tx-JcWvnm_YlcXViVCyFRrVJ5121MX1IVFslofcuArtaJDvVv4ZjdFCrdbAn3_cUPV9fPc1u0uX9fDG7XKaGAOOppVoBA2GM4EJxYziDEixlAnNVsNrmhOCiBNBK66rgQvNSW11VFbPUaEGn6GzsGzd439jQy5Xb-DaOlBQzDDkFQiKVj5TxLgRva9n55k35T4lBDubk4EQOfuRgTmI5motJOiYb1_20_j91_kfq9mH2-BuUXVXTL3aZfgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141073022</pqid></control><display><type>article</type><title>Interval vertex coloring of cartesian products and strong products of paths</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lai, Jinyu ; Tian, Shuangliang ; Jin, Meiqin</creator><creatorcontrib>Lai, Jinyu ; Tian, Shuangliang ; Jin, Meiqin</creatorcontrib><description>For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2905/1/012005</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Cartesian coordinates ; Graph coloring</subject><ispartof>Journal of physics. Conference series, 2024-11, Vol.2905 (1), p.12005</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2045-e3ba0406cc656a5cc54090e34615a84fe72218900babbd856b59bebddd4e3cb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2905/1/012005/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Lai, Jinyu</creatorcontrib><creatorcontrib>Tian, Shuangliang</creatorcontrib><creatorcontrib>Jin, Meiqin</creatorcontrib><title>Interval vertex coloring of cartesian products and strong products of paths</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.</description><subject>Cartesian coordinates</subject><subject>Graph coloring</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYJ3Qu3JZ9tLGTqnAwX1OiRpqh2zqUk39N-bUpkIgrlJOHnecw4PQqcYLjAURYZzRlLBS5GREniGM8AEgO-hye5nf_cuikN0FMIKgMaTT9Ddou2t36p1srW-tx-JcWvnm_YlcXViVCyFRrVJ5121MX1IVFslofcuArtaJDvVv4ZjdFCrdbAn3_cUPV9fPc1u0uX9fDG7XKaGAOOppVoBA2GM4EJxYziDEixlAnNVsNrmhOCiBNBK66rgQvNSW11VFbPUaEGn6GzsGzd439jQy5Xb-DaOlBQzDDkFQiKVj5TxLgRva9n55k35T4lBDubk4EQOfuRgTmI5motJOiYb1_20_j91_kfq9mH2-BuUXVXTL3aZfgQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lai, Jinyu</creator><creator>Tian, Shuangliang</creator><creator>Jin, Meiqin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241101</creationdate><title>Interval vertex coloring of cartesian products and strong products of paths</title><author>Lai, Jinyu ; Tian, Shuangliang ; Jin, Meiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2045-e3ba0406cc656a5cc54090e34615a84fe72218900babbd856b59bebddd4e3cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cartesian coordinates</topic><topic>Graph coloring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Jinyu</creatorcontrib><creatorcontrib>Tian, Shuangliang</creatorcontrib><creatorcontrib>Jin, Meiqin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Jinyu</au><au>Tian, Shuangliang</au><au>Jin, Meiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval vertex coloring of cartesian products and strong products of paths</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>2905</volume><issue>1</issue><spage>12005</spage><pages>12005-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>For the graph’s vertex coloring, it is required that for every vertex in a graph, the colors used in its open neighborhood or closed neighborhood must be able to form a continuous integer interval. A coloring is called an open neighborhood interval vertex coloring or a closed neighborhood interval vertex coloring of a graph if the neighborhood satisfying the condition is open or closed. In this paper, the interval vertex coloring of cartesian products and strong products of two paths is studied, and the low bound of the interval chromatic number is given.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2905/1/012005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-11, Vol.2905 (1), p.12005
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3141073022
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Cartesian coordinates
Graph coloring
title Interval vertex coloring of cartesian products and strong products of paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20vertex%20coloring%20of%20cartesian%20products%20and%20strong%20products%20of%20paths&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Lai,%20Jinyu&rft.date=2024-11-01&rft.volume=2905&rft.issue=1&rft.spage=12005&rft.pages=12005-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2905/1/012005&rft_dat=%3Cproquest_cross%3E3141073022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141073022&rft_id=info:pmid/&rfr_iscdi=true