Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions

High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2024, Vol.67 (12), p.3673-3681
Hauptverfasser: Yang, YunChun, Shao, WenCong, Yang, TianYang, Zou, HuiMing, Tian, ChangQing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3681
container_issue 12
container_start_page 3673
container_title Science China. Technological sciences
container_volume 67
creator Yang, YunChun
Shao, WenCong
Yang, TianYang
Zou, HuiMing
Tian, ChangQing
description High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.
doi_str_mv 10.1007/s11431-024-2649-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141067630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141067630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-9f99604ea26e0b7cd3d9227e43ac3e2b9bad4ce5960d522fc1679c132ec1f5413</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeA52gmSXeboxT_FAqK6Dmk2Um7ZXezJttCv70pK3hyLjMw7_fgPUJugd8D5-VDAlASGBeKiUJpJi_IBBaFZqA5v8x3USpWSgHXZJbSnueRC81BTYh_x-hDbG3nkNrONqdUJxp8vumH0JwebR8iq7s9uqEOHd2hHWh_aHuaTmnAlmaaYpO_sXb0iLvaNZho3VEXmopG3GYq3ZArb5uEs989JV_PT5_LV7Z-e1ktH9fMgV4MTHutC67QigL5pnSVrLQQJSppnUSx0RtbKYfzLKrmQniXk2kHUqADP1cgp-Ru9O1j-D5gGsw-HGKOlYwEBbwoC8mzCkaViyGliN70sW5tPBng5tyoGRs1uVFzbtTIzIiRSVnbbTH-Of8P_QBF8njE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141067630</pqid></control><display><type>article</type><title>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, YunChun ; Shao, WenCong ; Yang, TianYang ; Zou, HuiMing ; Tian, ChangQing</creator><creatorcontrib>Yang, YunChun ; Shao, WenCong ; Yang, TianYang ; Zou, HuiMing ; Tian, ChangQing</creatorcontrib><description>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-024-2649-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Air temperature ; Ambient temperature ; Carbon ; Electric vehicles ; Engineering ; Heat pumps ; Heating ; Management systems ; Mass flow ; Pressure effects ; Refrigerants ; Temperature ; Thermal management ; Vapors</subject><ispartof>Science China. Technological sciences, 2024, Vol.67 (12), p.3673-3681</ispartof><rights>Science China Press 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-9f99604ea26e0b7cd3d9227e43ac3e2b9bad4ce5960d522fc1679c132ec1f5413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-024-2649-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-024-2649-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, YunChun</creatorcontrib><creatorcontrib>Shao, WenCong</creatorcontrib><creatorcontrib>Yang, TianYang</creatorcontrib><creatorcontrib>Zou, HuiMing</creatorcontrib><creatorcontrib>Tian, ChangQing</creatorcontrib><title>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</description><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>Carbon</subject><subject>Electric vehicles</subject><subject>Engineering</subject><subject>Heat pumps</subject><subject>Heating</subject><subject>Management systems</subject><subject>Mass flow</subject><subject>Pressure effects</subject><subject>Refrigerants</subject><subject>Temperature</subject><subject>Thermal management</subject><subject>Vapors</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeA52gmSXeboxT_FAqK6Dmk2Um7ZXezJttCv70pK3hyLjMw7_fgPUJugd8D5-VDAlASGBeKiUJpJi_IBBaFZqA5v8x3USpWSgHXZJbSnueRC81BTYh_x-hDbG3nkNrONqdUJxp8vumH0JwebR8iq7s9uqEOHd2hHWh_aHuaTmnAlmaaYpO_sXb0iLvaNZho3VEXmopG3GYq3ZArb5uEs989JV_PT5_LV7Z-e1ktH9fMgV4MTHutC67QigL5pnSVrLQQJSppnUSx0RtbKYfzLKrmQniXk2kHUqADP1cgp-Ru9O1j-D5gGsw-HGKOlYwEBbwoC8mzCkaViyGliN70sW5tPBng5tyoGRs1uVFzbtTIzIiRSVnbbTH-Of8P_QBF8njE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, YunChun</creator><creator>Shao, WenCong</creator><creator>Yang, TianYang</creator><creator>Zou, HuiMing</creator><creator>Tian, ChangQing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</title><author>Yang, YunChun ; Shao, WenCong ; Yang, TianYang ; Zou, HuiMing ; Tian, ChangQing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-9f99604ea26e0b7cd3d9227e43ac3e2b9bad4ce5960d522fc1679c132ec1f5413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>Carbon</topic><topic>Electric vehicles</topic><topic>Engineering</topic><topic>Heat pumps</topic><topic>Heating</topic><topic>Management systems</topic><topic>Mass flow</topic><topic>Pressure effects</topic><topic>Refrigerants</topic><topic>Temperature</topic><topic>Thermal management</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, YunChun</creatorcontrib><creatorcontrib>Shao, WenCong</creatorcontrib><creatorcontrib>Yang, TianYang</creatorcontrib><creatorcontrib>Zou, HuiMing</creatorcontrib><creatorcontrib>Tian, ChangQing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, YunChun</au><au>Shao, WenCong</au><au>Yang, TianYang</au><au>Zou, HuiMing</au><au>Tian, ChangQing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>67</volume><issue>12</issue><spage>3673</spage><epage>3681</epage><pages>3673-3681</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-024-2649-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2024, Vol.67 (12), p.3673-3681
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_3141067630
source SpringerLink Journals; Alma/SFX Local Collection
subjects Air temperature
Ambient temperature
Carbon
Electric vehicles
Engineering
Heat pumps
Heating
Management systems
Mass flow
Pressure effects
Refrigerants
Temperature
Thermal management
Vapors
title Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20an%20R290%20vapor-injection%20heat%20pump%20system%20for%20electric%20vehicles%20in%20cold%20regions&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Yang,%20YunChun&rft.date=2024&rft.volume=67&rft.issue=12&rft.spage=3673&rft.epage=3681&rft.pages=3673-3681&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-024-2649-3&rft_dat=%3Cproquest_cross%3E3141067630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141067630&rft_id=info:pmid/&rfr_iscdi=true