Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions
High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effect...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2024, Vol.67 (12), p.3673-3681 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3681 |
---|---|
container_issue | 12 |
container_start_page | 3673 |
container_title | Science China. Technological sciences |
container_volume | 67 |
creator | Yang, YunChun Shao, WenCong Yang, TianYang Zou, HuiMing Tian, ChangQing |
description | High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved. |
doi_str_mv | 10.1007/s11431-024-2649-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3141067630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141067630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-9f99604ea26e0b7cd3d9227e43ac3e2b9bad4ce5960d522fc1679c132ec1f5413</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeA52gmSXeboxT_FAqK6Dmk2Um7ZXezJttCv70pK3hyLjMw7_fgPUJugd8D5-VDAlASGBeKiUJpJi_IBBaFZqA5v8x3USpWSgHXZJbSnueRC81BTYh_x-hDbG3nkNrONqdUJxp8vumH0JwebR8iq7s9uqEOHd2hHWh_aHuaTmnAlmaaYpO_sXb0iLvaNZho3VEXmopG3GYq3ZArb5uEs989JV_PT5_LV7Z-e1ktH9fMgV4MTHutC67QigL5pnSVrLQQJSppnUSx0RtbKYfzLKrmQniXk2kHUqADP1cgp-Ru9O1j-D5gGsw-HGKOlYwEBbwoC8mzCkaViyGliN70sW5tPBng5tyoGRs1uVFzbtTIzIiRSVnbbTH-Of8P_QBF8njE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141067630</pqid></control><display><type>article</type><title>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, YunChun ; Shao, WenCong ; Yang, TianYang ; Zou, HuiMing ; Tian, ChangQing</creator><creatorcontrib>Yang, YunChun ; Shao, WenCong ; Yang, TianYang ; Zou, HuiMing ; Tian, ChangQing</creatorcontrib><description>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-024-2649-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Air temperature ; Ambient temperature ; Carbon ; Electric vehicles ; Engineering ; Heat pumps ; Heating ; Management systems ; Mass flow ; Pressure effects ; Refrigerants ; Temperature ; Thermal management ; Vapors</subject><ispartof>Science China. Technological sciences, 2024, Vol.67 (12), p.3673-3681</ispartof><rights>Science China Press 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-9f99604ea26e0b7cd3d9227e43ac3e2b9bad4ce5960d522fc1679c132ec1f5413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-024-2649-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-024-2649-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, YunChun</creatorcontrib><creatorcontrib>Shao, WenCong</creatorcontrib><creatorcontrib>Yang, TianYang</creatorcontrib><creatorcontrib>Zou, HuiMing</creatorcontrib><creatorcontrib>Tian, ChangQing</creatorcontrib><title>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</description><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>Carbon</subject><subject>Electric vehicles</subject><subject>Engineering</subject><subject>Heat pumps</subject><subject>Heating</subject><subject>Management systems</subject><subject>Mass flow</subject><subject>Pressure effects</subject><subject>Refrigerants</subject><subject>Temperature</subject><subject>Thermal management</subject><subject>Vapors</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeA52gmSXeboxT_FAqK6Dmk2Um7ZXezJttCv70pK3hyLjMw7_fgPUJugd8D5-VDAlASGBeKiUJpJi_IBBaFZqA5v8x3USpWSgHXZJbSnueRC81BTYh_x-hDbG3nkNrONqdUJxp8vumH0JwebR8iq7s9uqEOHd2hHWh_aHuaTmnAlmaaYpO_sXb0iLvaNZho3VEXmopG3GYq3ZArb5uEs989JV_PT5_LV7Z-e1ktH9fMgV4MTHutC67QigL5pnSVrLQQJSppnUSx0RtbKYfzLKrmQniXk2kHUqADP1cgp-Ru9O1j-D5gGsw-HGKOlYwEBbwoC8mzCkaViyGliN70sW5tPBng5tyoGRs1uVFzbtTIzIiRSVnbbTH-Of8P_QBF8njE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, YunChun</creator><creator>Shao, WenCong</creator><creator>Yang, TianYang</creator><creator>Zou, HuiMing</creator><creator>Tian, ChangQing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</title><author>Yang, YunChun ; Shao, WenCong ; Yang, TianYang ; Zou, HuiMing ; Tian, ChangQing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-9f99604ea26e0b7cd3d9227e43ac3e2b9bad4ce5960d522fc1679c132ec1f5413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>Carbon</topic><topic>Electric vehicles</topic><topic>Engineering</topic><topic>Heat pumps</topic><topic>Heating</topic><topic>Management systems</topic><topic>Mass flow</topic><topic>Pressure effects</topic><topic>Refrigerants</topic><topic>Temperature</topic><topic>Thermal management</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, YunChun</creatorcontrib><creatorcontrib>Shao, WenCong</creatorcontrib><creatorcontrib>Yang, TianYang</creatorcontrib><creatorcontrib>Zou, HuiMing</creatorcontrib><creatorcontrib>Tian, ChangQing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, YunChun</au><au>Shao, WenCong</au><au>Yang, TianYang</au><au>Zou, HuiMing</au><au>Tian, ChangQing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>67</volume><issue>12</issue><spage>3673</spage><epage>3681</epage><pages>3673-3681</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-024-2649-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2024, Vol.67 (12), p.3673-3681 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_proquest_journals_3141067630 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Air temperature Ambient temperature Carbon Electric vehicles Engineering Heat pumps Heating Management systems Mass flow Pressure effects Refrigerants Temperature Thermal management Vapors |
title | Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20an%20R290%20vapor-injection%20heat%20pump%20system%20for%20electric%20vehicles%20in%20cold%20regions&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Yang,%20YunChun&rft.date=2024&rft.volume=67&rft.issue=12&rft.spage=3673&rft.epage=3681&rft.pages=3673-3681&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-024-2649-3&rft_dat=%3Cproquest_cross%3E3141067630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141067630&rft_id=info:pmid/&rfr_iscdi=true |