Necessary Optimality Conditions of the First and Second Order in a Single-Step Control Problem Described by a Difference Equation and a Volterra-Type Integro-Differential Equation

A stepwise optimal control problem described by a set of difference and Volterra-type integro-differential equations and a Bolza functional is considered. Previously, similar problems were studied for the case of differential and ordinary difference equations. Assuming that the control domains are o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2024, Vol.64 (10), p.2256-2268
Hauptverfasser: Mansimov, K. B., Kerimova, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2268
container_issue 10
container_start_page 2256
container_title Computational mathematics and mathematical physics
container_volume 64
creator Mansimov, K. B.
Kerimova, A. V.
description A stepwise optimal control problem described by a set of difference and Volterra-type integro-differential equations and a Bolza functional is considered. Previously, similar problems were studied for the case of differential and ordinary difference equations. Assuming that the control domains are open, using a modified version of the increment method, the first and second variations of the quality functional are calculated. Using these variations, an analogue of the Euler equation and a number of constructively verifiable necessary optimality conditions of the second order are proved.
doi_str_mv 10.1134/S0965542524701240
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3141063601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141063601</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-4ea85770e20ca2800b1bc564e832c40e35f9cae218e772b30d11d3e74c02a3ab3</originalsourceid><addsrcrecordid>eNplkctOwzAURC0EEqXwAeyuxDrgd9IlKk8JUaQC28pxboqrNE5td9Hv4gdJeC5Y3cWcmZHuEHLK6DljQl7M6UQrJbniMqeMS7pHRkwplWmt-T4ZDXI26IfkKMYVpUxPCjEi749oMUYTdjDrklubxqUdTH1bueR8G8HXkN4QblyICUxbwRxtr8IsVBjAtWBg7tplg9k8YTc4U_ANPAVfNriGK4w2uBIrKHc9euXqGgO2FuF6szVDxWeogVffJAzBZM-7DuG-TbgMPvvhkzPNr-OYHNSmiXjyfcfk5eb6eXqXPcxu76eXD1nHlE6ZRFOoPKfIqTW8oLRkpVVaYiG4lRSFqifWIGcF5jkvBa0YqwTm0lJuhCnFmJx95XbBb7YY02Llt6HtKxeCSUa10JT1FP-iYhf6R2D4oxhdDOMs_o0jPgDFCoQB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141063601</pqid></control><display><type>article</type><title>Necessary Optimality Conditions of the First and Second Order in a Single-Step Control Problem Described by a Difference Equation and a Volterra-Type Integro-Differential Equation</title><source>SpringerLink Journals</source><creator>Mansimov, K. B. ; Kerimova, A. V.</creator><creatorcontrib>Mansimov, K. B. ; Kerimova, A. V.</creatorcontrib><description>A stepwise optimal control problem described by a set of difference and Volterra-type integro-differential equations and a Bolza functional is considered. Previously, similar problems were studied for the case of differential and ordinary difference equations. Assuming that the control domains are open, using a modified version of the increment method, the first and second variations of the quality functional are calculated. Using these variations, an analogue of the Euler equation and a number of constructively verifiable necessary optimality conditions of the second order are proved.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542524701240</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Difference equations ; Differential equations ; Euler-Lagrange equation ; Mathematics ; Mathematics and Statistics ; Optimal Control ; Optimization ; Volterra integral equations</subject><ispartof>Computational mathematics and mathematical physics, 2024, Vol.64 (10), p.2256-2268</ispartof><rights>Pleiades Publishing, Ltd. 2024 ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2024, Vol. 64, No. 10, pp. 2256–2268. © Pleiades Publishing, Ltd., 2024.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542524701240$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542524701240$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mansimov, K. B.</creatorcontrib><creatorcontrib>Kerimova, A. V.</creatorcontrib><title>Necessary Optimality Conditions of the First and Second Order in a Single-Step Control Problem Described by a Difference Equation and a Volterra-Type Integro-Differential Equation</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A stepwise optimal control problem described by a set of difference and Volterra-type integro-differential equations and a Bolza functional is considered. Previously, similar problems were studied for the case of differential and ordinary difference equations. Assuming that the control domains are open, using a modified version of the increment method, the first and second variations of the quality functional are calculated. Using these variations, an analogue of the Euler equation and a number of constructively verifiable necessary optimality conditions of the second order are proved.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Euler-Lagrange equation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimal Control</subject><subject>Optimization</subject><subject>Volterra integral equations</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkctOwzAURC0EEqXwAeyuxDrgd9IlKk8JUaQC28pxboqrNE5td9Hv4gdJeC5Y3cWcmZHuEHLK6DljQl7M6UQrJbniMqeMS7pHRkwplWmt-T4ZDXI26IfkKMYVpUxPCjEi749oMUYTdjDrklubxqUdTH1bueR8G8HXkN4QblyICUxbwRxtr8IsVBjAtWBg7tplg9k8YTc4U_ANPAVfNriGK4w2uBIrKHc9euXqGgO2FuF6szVDxWeogVffJAzBZM-7DuG-TbgMPvvhkzPNr-OYHNSmiXjyfcfk5eb6eXqXPcxu76eXD1nHlE6ZRFOoPKfIqTW8oLRkpVVaYiG4lRSFqifWIGcF5jkvBa0YqwTm0lJuhCnFmJx95XbBb7YY02Llt6HtKxeCSUa10JT1FP-iYhf6R2D4oxhdDOMs_o0jPgDFCoQB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mansimov, K. B.</creator><creator>Kerimova, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>Necessary Optimality Conditions of the First and Second Order in a Single-Step Control Problem Described by a Difference Equation and a Volterra-Type Integro-Differential Equation</title><author>Mansimov, K. B. ; Kerimova, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-4ea85770e20ca2800b1bc564e832c40e35f9cae218e772b30d11d3e74c02a3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Euler-Lagrange equation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimal Control</topic><topic>Optimization</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansimov, K. B.</creatorcontrib><creatorcontrib>Kerimova, A. V.</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansimov, K. B.</au><au>Kerimova, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Necessary Optimality Conditions of the First and Second Order in a Single-Step Control Problem Described by a Difference Equation and a Volterra-Type Integro-Differential Equation</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2024</date><risdate>2024</risdate><volume>64</volume><issue>10</issue><spage>2256</spage><epage>2268</epage><pages>2256-2268</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A stepwise optimal control problem described by a set of difference and Volterra-type integro-differential equations and a Bolza functional is considered. Previously, similar problems were studied for the case of differential and ordinary difference equations. Assuming that the control domains are open, using a modified version of the increment method, the first and second variations of the quality functional are calculated. Using these variations, an analogue of the Euler equation and a number of constructively verifiable necessary optimality conditions of the second order are proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542524701240</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2024, Vol.64 (10), p.2256-2268
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_3141063601
source SpringerLink Journals
subjects Computational Mathematics and Numerical Analysis
Difference equations
Differential equations
Euler-Lagrange equation
Mathematics
Mathematics and Statistics
Optimal Control
Optimization
Volterra integral equations
title Necessary Optimality Conditions of the First and Second Order in a Single-Step Control Problem Described by a Difference Equation and a Volterra-Type Integro-Differential Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Necessary%20Optimality%20Conditions%20of%20the%20First%20and%20Second%20Order%20in%20a%20Single-Step%20Control%20Problem%20Described%20by%20a%20Difference%20Equation%20and%20a%20Volterra-Type%20Integro-Differential%20Equation&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Mansimov,%20K.%20B.&rft.date=2024&rft.volume=64&rft.issue=10&rft.spage=2256&rft.epage=2268&rft.pages=2256-2268&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542524701240&rft_dat=%3Cproquest_sprin%3E3141063601%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141063601&rft_id=info:pmid/&rfr_iscdi=true