The ropelength conjecture of alternating knots

A long standing conjecture states that the ropelength of any alternating knot is at least proportional to its crossing number. In this paper we prove that this conjecture is true. That is, there exists a constant $b_0 \gt 0$ such that $R(K)\ge b_0Cr(K)$ for any alternating knot K, where R(K) is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2024-09, Vol.177 (2), p.367-369
1. Verfasser: DIAO, YUANAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A long standing conjecture states that the ropelength of any alternating knot is at least proportional to its crossing number. In this paper we prove that this conjecture is true. That is, there exists a constant $b_0 \gt 0$ such that $R(K)\ge b_0Cr(K)$ for any alternating knot K, where R(K) is the ropelength of K and Cr(K) is the crossing number of K. In this paper, we prove that this conjecture is true and establish that $b_0 \gt 1/56$ .
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004124000288