Single‐Source Vapor‐Deposition of MA1–xFAxPbI3 Perovskite Absorbers for Solar Cells

Vapor deposition of halide perovskites presents high potential for scalability and industrial processing of perovskite solar cells. It prevents the use of toxic solvents, allows thickness control, and yields conformal and uniform coating over large areas. However, the distinct volatility of the pero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12, Vol.34 (50), p.n/a
Hauptverfasser: Soto‐Montero, Tatiana, Kralj, Suzana, Soltanpoor, Wiria, Solomon, Junia S., Gómez, Jennifer S., Zanoni, Kassio P. S., Paliwal, Abhyuday, Bolink, Henk J., Baeumer, Christoph, Kentgens, Arno P. M., Morales‐Masis, Monica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vapor deposition of halide perovskites presents high potential for scalability and industrial processing of perovskite solar cells. It prevents the use of toxic solvents, allows thickness control, and yields conformal and uniform coating over large areas. However, the distinct volatility of the perovskite organic and inorganic components currently requires the use of multiple thermal sources or two‐step deposition to achieve the perovskite phase. In this work, single‐source, single‐step MA1–xFAxPbI3 thin film deposition with tunable stoichiometry by pulsed laser deposition is demostrated. By controlling the laser ablation of a solid target containing adjustable MAI:FAI:PbI2 ratios, the room temperature formation of cubic α‐phase MA1–xFAxPbI3 thin films is demonstrated. The target‐to‐film transfer of the ablated species, including the integrity of the organic molecules and the desired MA+:FA+ ratio, is confirmed by x‐ray photoelectron spectroscopy and solid‐state NMR. Photoluminescence analysis further confirms the shift of the bandgap with varying the MA+:FA+ ratio. Finally, proof‐of‐concept n‐i‐p solar cells with 14% efficiency are demonstrated with as‐deposited non‐passivated pulsed laser deposition (PLD)‐MA1–xFAxPbI3. This study opens the path for future developments in industry‐compatible vapor‐deposition methods for perovskite solar cells. This study demonstrates pulsed laser deposition (PLD) single‐source vapor deposition of MAxFA1–xPbI3 containing controlled ratios of MA+ and FA+ molecules. Detailed compositional analysis by XPS and ssNMR confirms the successful transfer of all the perovskite components from a single target to films. The successful implementation of PLD‐ MAxFA1–xPbI3 in a solar cell indicates the potential of PLD for photovoltaic applications.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202300588