Taming Scalable Visual Tokenizer for Autoregressive Image Generation
Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activa...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shi, Fengyuan Luo, Zhuoyan Ge, Yixiao Yang, Yujiu Shan, Ying Wang, Limin |
description | Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3140661886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140661886</sourcerecordid><originalsourceid>FETCH-proquest_journals_31406618863</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqRJG7uK_7PFtUS5LalpojeNg0-vgw_gdIbvTFgipMyzqhBixtIQes65UCtRljJh21oPxnVwvmmrrxbhYkLUFmp_R2feSNB6gnUcPWFHGIJ5IZwG3SEc0CHp0Xi3YNNW24Dpr3O23O_qzTF7kH9GDGPT-0juS43MC65UXlVK_nd9AEV-OrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140661886</pqid></control><display><type>article</type><title>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</title><source>Free E- Journals</source><creator>Shi, Fengyuan ; Luo, Zhuoyan ; Ge, Yixiao ; Yang, Yujiu ; Shan, Ying ; Wang, Limin</creator><creatorcontrib>Shi, Fengyuan ; Luo, Zhuoyan ; Ge, Yixiao ; Yang, Yujiu ; Shan, Ying ; Wang, Limin</creatorcontrib><description>Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Back propagation ; Coders ; Image processing ; Image reconstruction</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Luo, Zhuoyan</creatorcontrib><creatorcontrib>Ge, Yixiao</creatorcontrib><creatorcontrib>Yang, Yujiu</creatorcontrib><creatorcontrib>Shan, Ying</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><title>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</title><title>arXiv.org</title><description>Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.</description><subject>Back propagation</subject><subject>Coders</subject><subject>Image processing</subject><subject>Image reconstruction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqRJG7uK_7PFtUS5LalpojeNg0-vgw_gdIbvTFgipMyzqhBixtIQes65UCtRljJh21oPxnVwvmmrrxbhYkLUFmp_R2feSNB6gnUcPWFHGIJ5IZwG3SEc0CHp0Xi3YNNW24Dpr3O23O_qzTF7kH9GDGPT-0juS43MC65UXlVK_nd9AEV-OrM</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Shi, Fengyuan</creator><creator>Luo, Zhuoyan</creator><creator>Ge, Yixiao</creator><creator>Yang, Yujiu</creator><creator>Shan, Ying</creator><creator>Wang, Limin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</title><author>Shi, Fengyuan ; Luo, Zhuoyan ; Ge, Yixiao ; Yang, Yujiu ; Shan, Ying ; Wang, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31406618863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Coders</topic><topic>Image processing</topic><topic>Image reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Luo, Zhuoyan</creatorcontrib><creatorcontrib>Ge, Yixiao</creatorcontrib><creatorcontrib>Yang, Yujiu</creatorcontrib><creatorcontrib>Shan, Ying</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Fengyuan</au><au>Luo, Zhuoyan</au><au>Ge, Yixiao</au><au>Yang, Yujiu</au><au>Shan, Ying</au><au>Wang, Limin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3140661886 |
source | Free E- Journals |
subjects | Back propagation Coders Image processing Image reconstruction |
title | Taming Scalable Visual Tokenizer for Autoregressive Image Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Taming%20Scalable%20Visual%20Tokenizer%20for%20Autoregressive%20Image%20Generation&rft.jtitle=arXiv.org&rft.au=Shi,%20Fengyuan&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3140661886%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140661886&rft_id=info:pmid/&rfr_iscdi=true |