Taming Scalable Visual Tokenizer for Autoregressive Image Generation

Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Shi, Fengyuan, Luo, Zhuoyan, Ge, Yixiao, Yang, Yujiu, Shan, Ying, Wang, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shi, Fengyuan
Luo, Zhuoyan
Ge, Yixiao
Yang, Yujiu
Shan, Ying
Wang, Limin
description Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3140661886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140661886</sourcerecordid><originalsourceid>FETCH-proquest_journals_31406618863</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqRJG7uK_7PFtUS5LalpojeNg0-vgw_gdIbvTFgipMyzqhBixtIQes65UCtRljJh21oPxnVwvmmrrxbhYkLUFmp_R2feSNB6gnUcPWFHGIJ5IZwG3SEc0CHp0Xi3YNNW24Dpr3O23O_qzTF7kH9GDGPT-0juS43MC65UXlVK_nd9AEV-OrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140661886</pqid></control><display><type>article</type><title>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</title><source>Free E- Journals</source><creator>Shi, Fengyuan ; Luo, Zhuoyan ; Ge, Yixiao ; Yang, Yujiu ; Shan, Ying ; Wang, Limin</creator><creatorcontrib>Shi, Fengyuan ; Luo, Zhuoyan ; Ge, Yixiao ; Yang, Yujiu ; Shan, Ying ; Wang, Limin</creatorcontrib><description>Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Back propagation ; Coders ; Image processing ; Image reconstruction</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Luo, Zhuoyan</creatorcontrib><creatorcontrib>Ge, Yixiao</creatorcontrib><creatorcontrib>Yang, Yujiu</creatorcontrib><creatorcontrib>Shan, Ying</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><title>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</title><title>arXiv.org</title><description>Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.</description><subject>Back propagation</subject><subject>Coders</subject><subject>Image processing</subject><subject>Image reconstruction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqRJG7uK_7PFtUS5LalpojeNg0-vgw_gdIbvTFgipMyzqhBixtIQes65UCtRljJh21oPxnVwvmmrrxbhYkLUFmp_R2feSNB6gnUcPWFHGIJ5IZwG3SEc0CHp0Xi3YNNW24Dpr3O23O_qzTF7kH9GDGPT-0juS43MC65UXlVK_nd9AEV-OrM</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Shi, Fengyuan</creator><creator>Luo, Zhuoyan</creator><creator>Ge, Yixiao</creator><creator>Yang, Yujiu</creator><creator>Shan, Ying</creator><creator>Wang, Limin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</title><author>Shi, Fengyuan ; Luo, Zhuoyan ; Ge, Yixiao ; Yang, Yujiu ; Shan, Ying ; Wang, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31406618863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Coders</topic><topic>Image processing</topic><topic>Image reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Fengyuan</creatorcontrib><creatorcontrib>Luo, Zhuoyan</creatorcontrib><creatorcontrib>Ge, Yixiao</creatorcontrib><creatorcontrib>Yang, Yujiu</creatorcontrib><creatorcontrib>Shan, Ying</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Fengyuan</au><au>Luo, Zhuoyan</au><au>Ge, Yixiao</au><au>Yang, Yujiu</au><au>Shan, Ying</au><au>Wang, Limin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Taming Scalable Visual Tokenizer for Autoregressive Image Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook (\(2^{18}\)) with high dimension (\(256\)) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on both reconstruction (\(1.00\) rFID) and autoregressive visual generation (\(2.05\) gFID). The code and models are available at https://github.com/TencentARC/SEED-Voken.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3140661886
source Free E- Journals
subjects Back propagation
Coders
Image processing
Image reconstruction
title Taming Scalable Visual Tokenizer for Autoregressive Image Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Taming%20Scalable%20Visual%20Tokenizer%20for%20Autoregressive%20Image%20Generation&rft.jtitle=arXiv.org&rft.au=Shi,%20Fengyuan&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3140661886%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140661886&rft_id=info:pmid/&rfr_iscdi=true