On the semiclassical limit of the Schrödinger-Lohe model and concentration estimates

We study the semiclassical limit of quantum synchronization model and concentration estimates for the resulting limit model. From the Schrödinger-Lohe model, we rigorously derive the Vlasov-Lohe model using Wigner transform and Wigner measure method. In semiclassical limit, generalized Wigner distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2024-12, Vol.65 (12)
Hauptverfasser: Ha, Seung-Yeal, Hwang, Gyuyoung, Kim, Dohyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of mathematical physics
container_volume 65
creator Ha, Seung-Yeal
Hwang, Gyuyoung
Kim, Dohyun
description We study the semiclassical limit of quantum synchronization model and concentration estimates for the resulting limit model. From the Schrödinger-Lohe model, we rigorously derive the Vlasov-Lohe model using Wigner transform and Wigner measure method. In semiclassical limit, generalized Wigner distributions to the Schrödinger-Lohe model converge to a set of Wigner measures which corresponds to a weak solution to the Vlasov-Lohe model, and then we show the asymptotic collective behaviors of the Vlasov-Lohe model. When one-body potentials are identical, we show that complete synchronization emerges for the Vlasov-Lohe model. In contrast, for non-identical potentials the lack of boundedness results in practical synchronization for the integrals of solutions. Moreover, we construct a global existence of classical solutions to the Vlasov-Lohe model using the standard method of characteristics. Analysis in this work can deal with possibly non-identical potentials in which their differences are constant.
doi_str_mv 10.1063/5.0194571
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3140641402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140641402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-4ae8d07fbb632994c046ce6b414d5dfeb5afd724ee67ca68e60300b510107e9f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4AaWWIGUMk5sx1miij-pUhfQteU4E-oqiYvtLrgYF-BihLZrViPNfHpv3iPkmsGMgSzuxQxYxUXJTsiEgaqyUgp1SiYAeZ7lXKlzchHjBoAxxfmErJYDTWukEXtnOxOjs6ajnetdor7dn97sOvx8N274wJAt_LjpfYMdNUNDrR8sDimY5PxAMSbXm4Txkpy1pot4dZxTsnp6fJ-_ZIvl8-v8YZFZpvKUcYOqgbKta1nkVcUtcGlR1pzxRjQt1sK0TZlzRFlaIxVKKABqwYBBiVVbTMnNQXcb_OdutNcbvwvDaKkLxkGOQpCP1O2BssHHGLDV2zD-Gb40A_3Xmhb62NrI3h3YaF3ap_oH_gXZ5m0D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641402</pqid></control><display><type>article</type><title>On the semiclassical limit of the Schrödinger-Lohe model and concentration estimates</title><source>AIP Journals Complete</source><creator>Ha, Seung-Yeal ; Hwang, Gyuyoung ; Kim, Dohyun</creator><creatorcontrib>Ha, Seung-Yeal ; Hwang, Gyuyoung ; Kim, Dohyun</creatorcontrib><description>We study the semiclassical limit of quantum synchronization model and concentration estimates for the resulting limit model. From the Schrödinger-Lohe model, we rigorously derive the Vlasov-Lohe model using Wigner transform and Wigner measure method. In semiclassical limit, generalized Wigner distributions to the Schrödinger-Lohe model converge to a set of Wigner measures which corresponds to a weak solution to the Vlasov-Lohe model, and then we show the asymptotic collective behaviors of the Vlasov-Lohe model. When one-body potentials are identical, we show that complete synchronization emerges for the Vlasov-Lohe model. In contrast, for non-identical potentials the lack of boundedness results in practical synchronization for the integrals of solutions. Moreover, we construct a global existence of classical solutions to the Vlasov-Lohe model using the standard method of characteristics. Analysis in this work can deal with possibly non-identical potentials in which their differences are constant.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0194571</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Asymptotic methods ; Estimates ; Method of characteristics ; Synchronism ; Wigner distribution</subject><ispartof>Journal of mathematical physics, 2024-12, Vol.65 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-4ae8d07fbb632994c046ce6b414d5dfeb5afd724ee67ca68e60300b510107e9f3</cites><orcidid>0000-0002-6403-5590 ; 0000-0002-5137-9669 ; 0009-0008-7552-6636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0194571$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Ha, Seung-Yeal</creatorcontrib><creatorcontrib>Hwang, Gyuyoung</creatorcontrib><creatorcontrib>Kim, Dohyun</creatorcontrib><title>On the semiclassical limit of the Schrödinger-Lohe model and concentration estimates</title><title>Journal of mathematical physics</title><description>We study the semiclassical limit of quantum synchronization model and concentration estimates for the resulting limit model. From the Schrödinger-Lohe model, we rigorously derive the Vlasov-Lohe model using Wigner transform and Wigner measure method. In semiclassical limit, generalized Wigner distributions to the Schrödinger-Lohe model converge to a set of Wigner measures which corresponds to a weak solution to the Vlasov-Lohe model, and then we show the asymptotic collective behaviors of the Vlasov-Lohe model. When one-body potentials are identical, we show that complete synchronization emerges for the Vlasov-Lohe model. In contrast, for non-identical potentials the lack of boundedness results in practical synchronization for the integrals of solutions. Moreover, we construct a global existence of classical solutions to the Vlasov-Lohe model using the standard method of characteristics. Analysis in this work can deal with possibly non-identical potentials in which their differences are constant.</description><subject>Asymptotic methods</subject><subject>Estimates</subject><subject>Method of characteristics</subject><subject>Synchronism</subject><subject>Wigner distribution</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4AaWWIGUMk5sx1miij-pUhfQteU4E-oqiYvtLrgYF-BihLZrViPNfHpv3iPkmsGMgSzuxQxYxUXJTsiEgaqyUgp1SiYAeZ7lXKlzchHjBoAxxfmErJYDTWukEXtnOxOjs6ajnetdor7dn97sOvx8N274wJAt_LjpfYMdNUNDrR8sDimY5PxAMSbXm4Txkpy1pot4dZxTsnp6fJ-_ZIvl8-v8YZFZpvKUcYOqgbKta1nkVcUtcGlR1pzxRjQt1sK0TZlzRFlaIxVKKABqwYBBiVVbTMnNQXcb_OdutNcbvwvDaKkLxkGOQpCP1O2BssHHGLDV2zD-Gb40A_3Xmhb62NrI3h3YaF3ap_oH_gXZ5m0D</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ha, Seung-Yeal</creator><creator>Hwang, Gyuyoung</creator><creator>Kim, Dohyun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6403-5590</orcidid><orcidid>https://orcid.org/0000-0002-5137-9669</orcidid><orcidid>https://orcid.org/0009-0008-7552-6636</orcidid></search><sort><creationdate>20241201</creationdate><title>On the semiclassical limit of the Schrödinger-Lohe model and concentration estimates</title><author>Ha, Seung-Yeal ; Hwang, Gyuyoung ; Kim, Dohyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-4ae8d07fbb632994c046ce6b414d5dfeb5afd724ee67ca68e60300b510107e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Estimates</topic><topic>Method of characteristics</topic><topic>Synchronism</topic><topic>Wigner distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Seung-Yeal</creatorcontrib><creatorcontrib>Hwang, Gyuyoung</creatorcontrib><creatorcontrib>Kim, Dohyun</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Seung-Yeal</au><au>Hwang, Gyuyoung</au><au>Kim, Dohyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the semiclassical limit of the Schrödinger-Lohe model and concentration estimates</atitle><jtitle>Journal of mathematical physics</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>65</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study the semiclassical limit of quantum synchronization model and concentration estimates for the resulting limit model. From the Schrödinger-Lohe model, we rigorously derive the Vlasov-Lohe model using Wigner transform and Wigner measure method. In semiclassical limit, generalized Wigner distributions to the Schrödinger-Lohe model converge to a set of Wigner measures which corresponds to a weak solution to the Vlasov-Lohe model, and then we show the asymptotic collective behaviors of the Vlasov-Lohe model. When one-body potentials are identical, we show that complete synchronization emerges for the Vlasov-Lohe model. In contrast, for non-identical potentials the lack of boundedness results in practical synchronization for the integrals of solutions. Moreover, we construct a global existence of classical solutions to the Vlasov-Lohe model using the standard method of characteristics. Analysis in this work can deal with possibly non-identical potentials in which their differences are constant.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0194571</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6403-5590</orcidid><orcidid>https://orcid.org/0000-0002-5137-9669</orcidid><orcidid>https://orcid.org/0009-0008-7552-6636</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2024-12, Vol.65 (12)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_3140641402
source AIP Journals Complete
subjects Asymptotic methods
Estimates
Method of characteristics
Synchronism
Wigner distribution
title On the semiclassical limit of the Schrödinger-Lohe model and concentration estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20semiclassical%20limit%20of%20the%20Schr%C3%B6dinger-Lohe%20model%20and%20concentration%20estimates&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ha,%20Seung-Yeal&rft.date=2024-12-01&rft.volume=65&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0194571&rft_dat=%3Cproquest_scita%3E3140641402%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140641402&rft_id=info:pmid/&rfr_iscdi=true