Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN)

Mushrooms are known for their significant nutritional value and are essential to the human diet. However, the dilemmas associated with ingesting poisonous mushroom species stress the critical need for accurate identification methods. Despite many efforts to identify mushroom species, these methods a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.176818-176832
Hauptverfasser: Bashir, Rab Nawaz, Mzoughi, Olfa, Riaz, Nazish, Mujahid, Muhammed, Faheem, Muhammad, Tausif, Muhammad, Khan, Amjad Rehman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176832
container_issue
container_start_page 176818
container_title IEEE access
container_volume 12
creator Bashir, Rab Nawaz
Mzoughi, Olfa
Riaz, Nazish
Mujahid, Muhammed
Faheem, Muhammad
Tausif, Muhammad
Khan, Amjad Rehman
description Mushrooms are known for their significant nutritional value and are essential to the human diet. However, the dilemmas associated with ingesting poisonous mushroom species stress the critical need for accurate identification methods. Despite many efforts to identify mushroom species, these methods are often limited in identifying them from their natural habitat. This study addresses this gap by presenting a computer vision approach that uses machine learning for accurate and reliable image-based classification of mushrooms from their natural habitat. The proposed solution aims to enhance the safety of mushroom consumption by precisely classifying mushroom species. The images of mushroom species are taken from their natural habitat to increase their applicability in real-world scenarios. The study proposed Convolutional Neural Network (CNN) models and different image augmentation techniques to accurately identify one hundred and three (103) mushroom species. Evaluation of the model from the 20% of the test dataset showed an accuracy of 96.70% and high precision-recall and F1 score for each mushroom class. The study achieved a 4.4% increase in accuracy from the state-of-the-art approaches in mushroom species identification. This research is significant to mycologists, scientists, and the general public in promoting the safe usage of mushroom species.
doi_str_mv 10.1109/ACCESS.2024.3502543
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3140641090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10757390</ieee_id><doaj_id>oai_doaj_org_article_4857396763ec48159c0c37f90d8c62cc</doaj_id><sourcerecordid>3140641090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2043-70aa007d82fb4b2c96cee51a3e7a9129d86a96bee097ef2eb98a3fcdf891071d3</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjdCuRAX8AjhE4sIe2h3biR0fUcSXxGYPhSOyJs6k625aFzvZFf-elFQIX8aaee_Nx0uScwYLxkD_vC7Lm-VywYFnC5EDzzNxlMw4k3ouciG_ffkfJ2cxrmF8xZjK1Sx5-TXEP8H7TbrckXUU07LDGF3rLPbOb1O3TSvsh4Bdeo-167GP6XN021Va-u0_3w171Fis6ANTUf_fh78xvSqr6sdp8r3FLtLZIZ4kz7c3T-X9_PH33UN5_Ti3HDIxV4AIoJqCt3VWc6ulJcoZClKoGddNIVHLmgi0opZTrQsUrW3aQjNQrBEnycOk23hcm11wGwxvxqMzHwkfVgZD72xHJityJbRUUpDNCpZrC1aoVkNTWMmtHbUuJ61d8K8Dxd6s_RDGFaMRLAOZjTeHESUmlA0-xkDtZ1cGZm-LmWwxe1vMwZaRdTGxHBF9Yaj9TCDeAbpAiIE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641090</pqid></control><display><type>article</type><title>Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN)</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bashir, Rab Nawaz ; Mzoughi, Olfa ; Riaz, Nazish ; Mujahid, Muhammed ; Faheem, Muhammad ; Tausif, Muhammad ; Khan, Amjad Rehman</creator><creatorcontrib>Bashir, Rab Nawaz ; Mzoughi, Olfa ; Riaz, Nazish ; Mujahid, Muhammed ; Faheem, Muhammad ; Tausif, Muhammad ; Khan, Amjad Rehman</creatorcontrib><description>Mushrooms are known for their significant nutritional value and are essential to the human diet. However, the dilemmas associated with ingesting poisonous mushroom species stress the critical need for accurate identification methods. Despite many efforts to identify mushroom species, these methods are often limited in identifying them from their natural habitat. This study addresses this gap by presenting a computer vision approach that uses machine learning for accurate and reliable image-based classification of mushrooms from their natural habitat. The proposed solution aims to enhance the safety of mushroom consumption by precisely classifying mushroom species. The images of mushroom species are taken from their natural habitat to increase their applicability in real-world scenarios. The study proposed Convolutional Neural Network (CNN) models and different image augmentation techniques to accurately identify one hundred and three (103) mushroom species. Evaluation of the model from the 20% of the test dataset showed an accuracy of 96.70% and high precision-recall and F1 score for each mushroom class. The study achieved a 4.4% increase in accuracy from the state-of-the-art approaches in mushroom species identification. This research is significant to mycologists, scientists, and the general public in promoting the safe usage of mushroom species.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3502543</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adaptation models ; Artificial neural networks ; classifications ; Computational modeling ; Computer vision ; convolutional neural network (CNN) ; Convolutional neural networks ; Deep learning ; Feature extraction ; Habitats ; Identification methods ; Image color analysis ; Image enhancement ; Machine learning ; Mushroom ; Mushrooms ; Neural networks ; Shape ; Species classification ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.176818-176832</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3817-2655 ; 0000-0001-8758-9740 ; 0000-0001-7409-1775 ; 0000-0003-4628-4486 ; 0009-0009-7151-4440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10757390$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bashir, Rab Nawaz</creatorcontrib><creatorcontrib>Mzoughi, Olfa</creatorcontrib><creatorcontrib>Riaz, Nazish</creatorcontrib><creatorcontrib>Mujahid, Muhammed</creatorcontrib><creatorcontrib>Faheem, Muhammad</creatorcontrib><creatorcontrib>Tausif, Muhammad</creatorcontrib><creatorcontrib>Khan, Amjad Rehman</creatorcontrib><title>Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN)</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mushrooms are known for their significant nutritional value and are essential to the human diet. However, the dilemmas associated with ingesting poisonous mushroom species stress the critical need for accurate identification methods. Despite many efforts to identify mushroom species, these methods are often limited in identifying them from their natural habitat. This study addresses this gap by presenting a computer vision approach that uses machine learning for accurate and reliable image-based classification of mushrooms from their natural habitat. The proposed solution aims to enhance the safety of mushroom consumption by precisely classifying mushroom species. The images of mushroom species are taken from their natural habitat to increase their applicability in real-world scenarios. The study proposed Convolutional Neural Network (CNN) models and different image augmentation techniques to accurately identify one hundred and three (103) mushroom species. Evaluation of the model from the 20% of the test dataset showed an accuracy of 96.70% and high precision-recall and F1 score for each mushroom class. The study achieved a 4.4% increase in accuracy from the state-of-the-art approaches in mushroom species identification. This research is significant to mycologists, scientists, and the general public in promoting the safe usage of mushroom species.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>classifications</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Habitats</subject><subject>Identification methods</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>Mushroom</subject><subject>Mushrooms</subject><subject>Neural networks</subject><subject>Shape</subject><subject>Species classification</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjdCuRAX8AjhE4sIe2h3biR0fUcSXxGYPhSOyJs6k625aFzvZFf-elFQIX8aaee_Nx0uScwYLxkD_vC7Lm-VywYFnC5EDzzNxlMw4k3ouciG_ffkfJ2cxrmF8xZjK1Sx5-TXEP8H7TbrckXUU07LDGF3rLPbOb1O3TSvsh4Bdeo-167GP6XN021Va-u0_3w171Fis6ANTUf_fh78xvSqr6sdp8r3FLtLZIZ4kz7c3T-X9_PH33UN5_Ti3HDIxV4AIoJqCt3VWc6ulJcoZClKoGddNIVHLmgi0opZTrQsUrW3aQjNQrBEnycOk23hcm11wGwxvxqMzHwkfVgZD72xHJityJbRUUpDNCpZrC1aoVkNTWMmtHbUuJ61d8K8Dxd6s_RDGFaMRLAOZjTeHESUmlA0-xkDtZ1cGZm-LmWwxe1vMwZaRdTGxHBF9Yaj9TCDeAbpAiIE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bashir, Rab Nawaz</creator><creator>Mzoughi, Olfa</creator><creator>Riaz, Nazish</creator><creator>Mujahid, Muhammed</creator><creator>Faheem, Muhammad</creator><creator>Tausif, Muhammad</creator><creator>Khan, Amjad Rehman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid><orcidid>https://orcid.org/0000-0001-8758-9740</orcidid><orcidid>https://orcid.org/0000-0001-7409-1775</orcidid><orcidid>https://orcid.org/0000-0003-4628-4486</orcidid><orcidid>https://orcid.org/0009-0009-7151-4440</orcidid></search><sort><creationdate>2024</creationdate><title>Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN)</title><author>Bashir, Rab Nawaz ; Mzoughi, Olfa ; Riaz, Nazish ; Mujahid, Muhammed ; Faheem, Muhammad ; Tausif, Muhammad ; Khan, Amjad Rehman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2043-70aa007d82fb4b2c96cee51a3e7a9129d86a96bee097ef2eb98a3fcdf891071d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>classifications</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Habitats</topic><topic>Identification methods</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>Mushroom</topic><topic>Mushrooms</topic><topic>Neural networks</topic><topic>Shape</topic><topic>Species classification</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashir, Rab Nawaz</creatorcontrib><creatorcontrib>Mzoughi, Olfa</creatorcontrib><creatorcontrib>Riaz, Nazish</creatorcontrib><creatorcontrib>Mujahid, Muhammed</creatorcontrib><creatorcontrib>Faheem, Muhammad</creatorcontrib><creatorcontrib>Tausif, Muhammad</creatorcontrib><creatorcontrib>Khan, Amjad Rehman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashir, Rab Nawaz</au><au>Mzoughi, Olfa</au><au>Riaz, Nazish</au><au>Mujahid, Muhammed</au><au>Faheem, Muhammad</au><au>Tausif, Muhammad</au><au>Khan, Amjad Rehman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN)</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>176818</spage><epage>176832</epage><pages>176818-176832</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mushrooms are known for their significant nutritional value and are essential to the human diet. However, the dilemmas associated with ingesting poisonous mushroom species stress the critical need for accurate identification methods. Despite many efforts to identify mushroom species, these methods are often limited in identifying them from their natural habitat. This study addresses this gap by presenting a computer vision approach that uses machine learning for accurate and reliable image-based classification of mushrooms from their natural habitat. The proposed solution aims to enhance the safety of mushroom consumption by precisely classifying mushroom species. The images of mushroom species are taken from their natural habitat to increase their applicability in real-world scenarios. The study proposed Convolutional Neural Network (CNN) models and different image augmentation techniques to accurately identify one hundred and three (103) mushroom species. Evaluation of the model from the 20% of the test dataset showed an accuracy of 96.70% and high precision-recall and F1 score for each mushroom class. The study achieved a 4.4% increase in accuracy from the state-of-the-art approaches in mushroom species identification. This research is significant to mycologists, scientists, and the general public in promoting the safe usage of mushroom species.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3502543</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid><orcidid>https://orcid.org/0000-0001-8758-9740</orcidid><orcidid>https://orcid.org/0000-0001-7409-1775</orcidid><orcidid>https://orcid.org/0000-0003-4628-4486</orcidid><orcidid>https://orcid.org/0009-0009-7151-4440</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.176818-176832
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3140641090
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Adaptation models
Artificial neural networks
classifications
Computational modeling
Computer vision
convolutional neural network (CNN)
Convolutional neural networks
Deep learning
Feature extraction
Habitats
Identification methods
Image color analysis
Image enhancement
Machine learning
Mushroom
Mushrooms
Neural networks
Shape
Species classification
Training
title Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mushroom%20Species%20Classification%20in%20Natural%20Habitats%20Using%20Convolutional%20Neural%20Networks%20(CNN)&rft.jtitle=IEEE%20access&rft.au=Bashir,%20Rab%20Nawaz&rft.date=2024&rft.volume=12&rft.spage=176818&rft.epage=176832&rft.pages=176818-176832&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3502543&rft_dat=%3Cproquest_ieee_%3E3140641090%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140641090&rft_id=info:pmid/&rft_ieee_id=10757390&rft_doaj_id=oai_doaj_org_article_4857396763ec48159c0c37f90d8c62cc&rfr_iscdi=true