Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem

The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere . In this paper we study the extensions of the Euler and Lagrange relative equilibria ( for short) on the plane to the sphere. The on are not isolated in general. They usually hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2024-09, Vol.29 (6), p.803-824
Hauptverfasser: Fujiwara, Toshiaki, Pérez-Chavela, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 6
container_start_page 803
container_title Regular & chaotic dynamics
container_volume 29
creator Fujiwara, Toshiaki
Pérez-Chavela, Ernesto
description The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere . In this paper we study the extensions of the Euler and Lagrange relative equilibria ( for short) on the plane to the sphere. The on are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange and Euler . Another one is between the different types of the shapes of Lagrange . We prove that bifurcations between equilateral and isosceles Lagrange exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange exist for the partial equal masses case.
doi_str_mv 10.1134/S1560354724560028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3140456866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140456866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-fd47ad8cf5431d52c628729fca33345e8144421c9453e65f085bf158d19d45ec3</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wI-V3Nt00dX5hQGDp3PJc3FZXTNlrSD_XszNvBBfDqX73I4HwD3GD1iTNnTJ-Y5opwVhKUGEXEBRpjlImOC8cvUp212xK_BTYxrhDAXBRqBpvJd77pB9s53EcpOw4mzQ1Dnhbfww7Rp2Bs43Q2udU1wElofYL8ycOGjO2LtAVZD2BsNl6tgTDbx-gAXwTet2dyCKyvbaO7OdQy-XqbL6jWbv8_equd5pnAp-sxqVkgtlOWMYs2JyokoSGmVpJQybgRmjBGsSsapyblFgjc2faFxqROs6Bg8nHy3we8GE_t67YfQpZM1xQylXESeJxY-sVTwMQZj621wGxkONUb1Mcr6T5RJQ06amLjdtwm_zv-LfgBBQnVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140456866</pqid></control><display><type>article</type><title>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fujiwara, Toshiaki ; Pérez-Chavela, Ernesto</creator><creatorcontrib>Fujiwara, Toshiaki ; Pérez-Chavela, Ernesto</creatorcontrib><description>The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere . In this paper we study the extensions of the Euler and Lagrange relative equilibria ( for short) on the plane to the sphere. The on are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange and Euler . Another one is between the different types of the shapes of Lagrange . We prove that bifurcations between equilateral and isosceles Lagrange exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange exist for the partial equal masses case.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354724560028</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bifurcations ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Three body problem</subject><ispartof>Regular &amp; chaotic dynamics, 2024-09, Vol.29 (6), p.803-824</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-fd47ad8cf5431d52c628729fca33345e8144421c9453e65f085bf158d19d45ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354724560028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354724560028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fujiwara, Toshiaki</creatorcontrib><creatorcontrib>Pérez-Chavela, Ernesto</creatorcontrib><title>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</title><title>Regular &amp; chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere . In this paper we study the extensions of the Euler and Lagrange relative equilibria ( for short) on the plane to the sphere. The on are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange and Euler . Another one is between the different types of the shapes of Lagrange . We prove that bifurcations between equilateral and isosceles Lagrange exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange exist for the partial equal masses case.</description><subject>Bifurcations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Three body problem</subject><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wI-V3Nt00dX5hQGDp3PJc3FZXTNlrSD_XszNvBBfDqX73I4HwD3GD1iTNnTJ-Y5opwVhKUGEXEBRpjlImOC8cvUp212xK_BTYxrhDAXBRqBpvJd77pB9s53EcpOw4mzQ1Dnhbfww7Rp2Bs43Q2udU1wElofYL8ycOGjO2LtAVZD2BsNl6tgTDbx-gAXwTet2dyCKyvbaO7OdQy-XqbL6jWbv8_equd5pnAp-sxqVkgtlOWMYs2JyokoSGmVpJQybgRmjBGsSsapyblFgjc2faFxqROs6Bg8nHy3we8GE_t67YfQpZM1xQylXESeJxY-sVTwMQZj621wGxkONUb1Mcr6T5RJQ06amLjdtwm_zv-LfgBBQnVm</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Fujiwara, Toshiaki</creator><creator>Pérez-Chavela, Ernesto</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240905</creationdate><title>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</title><author>Fujiwara, Toshiaki ; Pérez-Chavela, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-fd47ad8cf5431d52c628729fca33345e8144421c9453e65f085bf158d19d45ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Toshiaki</creatorcontrib><creatorcontrib>Pérez-Chavela, Ernesto</creatorcontrib><collection>CrossRef</collection><jtitle>Regular &amp; chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Toshiaki</au><au>Pérez-Chavela, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</atitle><jtitle>Regular &amp; chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2024-09-05</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>803</spage><epage>824</epage><pages>803-824</pages><issn>1560-3547</issn><eissn>1468-4845</eissn><abstract>The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere . In this paper we study the extensions of the Euler and Lagrange relative equilibria ( for short) on the plane to the sphere. The on are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange and Euler . Another one is between the different types of the shapes of Lagrange . We prove that bifurcations between equilateral and isosceles Lagrange exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange exist for the partial equal masses case.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354724560028</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1560-3547
ispartof Regular & chaotic dynamics, 2024-09, Vol.29 (6), p.803-824
issn 1560-3547
1468-4845
language eng
recordid cdi_proquest_journals_3140456866
source SpringerLink Journals - AutoHoldings
subjects Bifurcations
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Three body problem
title Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuations%20and%20Bifurcations%20of%20Relative%20Equilibria%20for%20the%20Positively%20Curved%20Three-Body%20Problem&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Fujiwara,%20Toshiaki&rft.date=2024-09-05&rft.volume=29&rft.issue=6&rft.spage=803&rft.epage=824&rft.pages=803-824&rft.issn=1560-3547&rft.eissn=1468-4845&rft_id=info:doi/10.1134/S1560354724560028&rft_dat=%3Cproquest_cross%3E3140456866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140456866&rft_id=info:pmid/&rfr_iscdi=true