Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem
The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere . In this paper we study the extensions of the Euler and Lagrange relative equilibria ( for short) on the plane to the sphere. The on are not isolated in general. They usually hav...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2024-09, Vol.29 (6), p.803-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 6 |
container_start_page | 803 |
container_title | Regular & chaotic dynamics |
container_volume | 29 |
creator | Fujiwara, Toshiaki Pérez-Chavela, Ernesto |
description | The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere
. In this paper we study the extensions of the Euler and Lagrange relative equilibria (
for short) on the plane to the sphere.
The
on
are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange
and Euler
. Another one is between the different types of the shapes of Lagrange
. We prove that bifurcations between equilateral and isosceles Lagrange
exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange
exist for the partial equal masses case. |
doi_str_mv | 10.1134/S1560354724560028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3140456866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140456866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-fd47ad8cf5431d52c628729fca33345e8144421c9453e65f085bf158d19d45ec3</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wI-V3Nt00dX5hQGDp3PJc3FZXTNlrSD_XszNvBBfDqX73I4HwD3GD1iTNnTJ-Y5opwVhKUGEXEBRpjlImOC8cvUp212xK_BTYxrhDAXBRqBpvJd77pB9s53EcpOw4mzQ1Dnhbfww7Rp2Bs43Q2udU1wElofYL8ycOGjO2LtAVZD2BsNl6tgTDbx-gAXwTet2dyCKyvbaO7OdQy-XqbL6jWbv8_equd5pnAp-sxqVkgtlOWMYs2JyokoSGmVpJQybgRmjBGsSsapyblFgjc2faFxqROs6Bg8nHy3we8GE_t67YfQpZM1xQylXESeJxY-sVTwMQZj621wGxkONUb1Mcr6T5RJQ06amLjdtwm_zv-LfgBBQnVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140456866</pqid></control><display><type>article</type><title>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fujiwara, Toshiaki ; Pérez-Chavela, Ernesto</creator><creatorcontrib>Fujiwara, Toshiaki ; Pérez-Chavela, Ernesto</creatorcontrib><description>The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere
. In this paper we study the extensions of the Euler and Lagrange relative equilibria (
for short) on the plane to the sphere.
The
on
are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange
and Euler
. Another one is between the different types of the shapes of Lagrange
. We prove that bifurcations between equilateral and isosceles Lagrange
exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange
exist for the partial equal masses case.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354724560028</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bifurcations ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Three body problem</subject><ispartof>Regular & chaotic dynamics, 2024-09, Vol.29 (6), p.803-824</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-fd47ad8cf5431d52c628729fca33345e8144421c9453e65f085bf158d19d45ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354724560028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354724560028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fujiwara, Toshiaki</creatorcontrib><creatorcontrib>Pérez-Chavela, Ernesto</creatorcontrib><title>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</title><title>Regular & chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere
. In this paper we study the extensions of the Euler and Lagrange relative equilibria (
for short) on the plane to the sphere.
The
on
are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange
and Euler
. Another one is between the different types of the shapes of Lagrange
. We prove that bifurcations between equilateral and isosceles Lagrange
exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange
exist for the partial equal masses case.</description><subject>Bifurcations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Three body problem</subject><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wI-V3Nt00dX5hQGDp3PJc3FZXTNlrSD_XszNvBBfDqX73I4HwD3GD1iTNnTJ-Y5opwVhKUGEXEBRpjlImOC8cvUp212xK_BTYxrhDAXBRqBpvJd77pB9s53EcpOw4mzQ1Dnhbfww7Rp2Bs43Q2udU1wElofYL8ycOGjO2LtAVZD2BsNl6tgTDbx-gAXwTet2dyCKyvbaO7OdQy-XqbL6jWbv8_equd5pnAp-sxqVkgtlOWMYs2JyokoSGmVpJQybgRmjBGsSsapyblFgjc2faFxqROs6Bg8nHy3we8GE_t67YfQpZM1xQylXESeJxY-sVTwMQZj621wGxkONUb1Mcr6T5RJQ06amLjdtwm_zv-LfgBBQnVm</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Fujiwara, Toshiaki</creator><creator>Pérez-Chavela, Ernesto</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240905</creationdate><title>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</title><author>Fujiwara, Toshiaki ; Pérez-Chavela, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-fd47ad8cf5431d52c628729fca33345e8144421c9453e65f085bf158d19d45ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Toshiaki</creatorcontrib><creatorcontrib>Pérez-Chavela, Ernesto</creatorcontrib><collection>CrossRef</collection><jtitle>Regular & chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Toshiaki</au><au>Pérez-Chavela, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem</atitle><jtitle>Regular & chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2024-09-05</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>803</spage><epage>824</epage><pages>803-824</pages><issn>1560-3547</issn><eissn>1468-4845</eissn><abstract>The positively curved three-body problem is a natural extension of the planar Newtonian three-body problem to the sphere
. In this paper we study the extensions of the Euler and Lagrange relative equilibria (
for short) on the plane to the sphere.
The
on
are not isolated in general. They usually have one-dimensional continuation in the three-dimensional shape space. We show that there are two types of bifurcations. One is the bifurcations between Lagrange
and Euler
. Another one is between the different types of the shapes of Lagrange
. We prove that bifurcations between equilateral and isosceles Lagrange
exist for the case of equal masses, and that bifurcations between isosceles and scalene Lagrange
exist for the partial equal masses case.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354724560028</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1560-3547 |
ispartof | Regular & chaotic dynamics, 2024-09, Vol.29 (6), p.803-824 |
issn | 1560-3547 1468-4845 |
language | eng |
recordid | cdi_proquest_journals_3140456866 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bifurcations Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Three body problem |
title | Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuations%20and%20Bifurcations%20of%20Relative%20Equilibria%20for%20the%20Positively%20Curved%20Three-Body%20Problem&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Fujiwara,%20Toshiaki&rft.date=2024-09-05&rft.volume=29&rft.issue=6&rft.spage=803&rft.epage=824&rft.pages=803-824&rft.issn=1560-3547&rft.eissn=1468-4845&rft_id=info:doi/10.1134/S1560354724560028&rft_dat=%3Cproquest_cross%3E3140456866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140456866&rft_id=info:pmid/&rfr_iscdi=true |