A New Mechanism Revealed by Cross-Diffusion-Driven Instability and Double-Hopf Bifurcation in the Brusselator System
The pattern dynamics of the Brusselator system with cross-diffusion and gene expression time delay are investigated. Conditions for cross-diffusion-driven instability are established, which reveal that the formation of patterns in the system with cross-diffusion does not follow the “short-range acti...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2025-02, Vol.35 (1), Article 21 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of nonlinear science |
container_volume | 35 |
creator | Zhao, Shuangrui Yu, Pei Jiang, Weihua Wang, Hongbin |
description | The pattern dynamics of the Brusselator system with cross-diffusion and gene expression time delay are investigated. Conditions for cross-diffusion-driven instability are established, which reveal that the formation of patterns in the system with cross-diffusion does not follow the “short-range activation” and “long-range inhibition” mechanisms. Moreover, the conditions for the occurrence of Turing bifurcation, Hopf bifurcation, Turing–Hopf bifurcation, and double-Hopf bifurcation are obtained using eigenvalue analysis. The algorithms for calculating the normal forms of double-Hopf bifurcation are given using multiple timescale method, with the coefficients expressed explicitly in terms of the original system parameters. An essential contribution of this paper is the effect of the space element taken into account in this method, which results in that the normal forms of the double-Hopf bifurcation for the Brusselator system are divided into two categories: One is 1:3 strong resonance, and the other consists of other strong resonances, weak resonance, and non-resonance. Different types of spatiotemporal patterns are classified according to the exact partition of the parameter space. It is demonstrated that the Brusselator system can exhibit stable spatially inhomogeneous periodic and quasi-periodic orbits. |
doi_str_mv | 10.1007/s00332-024-10107-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3140456430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140456430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f07ef08853d7550203efbee0caeb94f93a76e1feaf1c234f03843c5c9175ca273</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMYydOlqUFWomHxGNtOe4YXKVJsR1Q_55AkdixGml07h3NIeSUwzkHUBcRQIiMQSYZBw6KFXtkxOWw4rJQ-2QElShZWSl5SI5iXAFwlYtsRNKE3uMnvUP7Zlof1_QRP9A0uKT1lk5DFyObeef66LuWzYL_wJYu2phM7RufttS0Szrr-rpBNu82jl561wdr0oBT39L0hvQy9DFiY1IX6NM2JlwfkwNnmognv3NMXq6vnqdzdvtws5hObpnNABJzoNBBWeZiqfIcMhDoakSwButKukoYVSB3aBy3mZAORCmFzW01_GZNpsSYnO16N6F77zEmver60A4nteASZF5IAQOV7Sj7_W5ApzfBr03Yag76267e2dWDXf1jVxdDSOxCcYDbVwx_1f-kvgA1Yn3K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140456430</pqid></control><display><type>article</type><title>A New Mechanism Revealed by Cross-Diffusion-Driven Instability and Double-Hopf Bifurcation in the Brusselator System</title><source>SpringerLink Journals</source><creator>Zhao, Shuangrui ; Yu, Pei ; Jiang, Weihua ; Wang, Hongbin</creator><creatorcontrib>Zhao, Shuangrui ; Yu, Pei ; Jiang, Weihua ; Wang, Hongbin</creatorcontrib><description>The pattern dynamics of the Brusselator system with cross-diffusion and gene expression time delay are investigated. Conditions for cross-diffusion-driven instability are established, which reveal that the formation of patterns in the system with cross-diffusion does not follow the “short-range activation” and “long-range inhibition” mechanisms. Moreover, the conditions for the occurrence of Turing bifurcation, Hopf bifurcation, Turing–Hopf bifurcation, and double-Hopf bifurcation are obtained using eigenvalue analysis. The algorithms for calculating the normal forms of double-Hopf bifurcation are given using multiple timescale method, with the coefficients expressed explicitly in terms of the original system parameters. An essential contribution of this paper is the effect of the space element taken into account in this method, which results in that the normal forms of the double-Hopf bifurcation for the Brusselator system are divided into two categories: One is 1:3 strong resonance, and the other consists of other strong resonances, weak resonance, and non-resonance. Different types of spatiotemporal patterns are classified according to the exact partition of the parameter space. It is demonstrated that the Brusselator system can exhibit stable spatially inhomogeneous periodic and quasi-periodic orbits.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-024-10107-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Canonical forms ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Eigenvalues ; Gene expression ; Hopf bifurcation ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Orbits ; Parameters ; Resonance ; Theoretical</subject><ispartof>Journal of nonlinear science, 2025-02, Vol.35 (1), Article 21</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f07ef08853d7550203efbee0caeb94f93a76e1feaf1c234f03843c5c9175ca273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-024-10107-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-024-10107-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Shuangrui</creatorcontrib><creatorcontrib>Yu, Pei</creatorcontrib><creatorcontrib>Jiang, Weihua</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><title>A New Mechanism Revealed by Cross-Diffusion-Driven Instability and Double-Hopf Bifurcation in the Brusselator System</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>The pattern dynamics of the Brusselator system with cross-diffusion and gene expression time delay are investigated. Conditions for cross-diffusion-driven instability are established, which reveal that the formation of patterns in the system with cross-diffusion does not follow the “short-range activation” and “long-range inhibition” mechanisms. Moreover, the conditions for the occurrence of Turing bifurcation, Hopf bifurcation, Turing–Hopf bifurcation, and double-Hopf bifurcation are obtained using eigenvalue analysis. The algorithms for calculating the normal forms of double-Hopf bifurcation are given using multiple timescale method, with the coefficients expressed explicitly in terms of the original system parameters. An essential contribution of this paper is the effect of the space element taken into account in this method, which results in that the normal forms of the double-Hopf bifurcation for the Brusselator system are divided into two categories: One is 1:3 strong resonance, and the other consists of other strong resonances, weak resonance, and non-resonance. Different types of spatiotemporal patterns are classified according to the exact partition of the parameter space. It is demonstrated that the Brusselator system can exhibit stable spatially inhomogeneous periodic and quasi-periodic orbits.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Canonical forms</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Eigenvalues</subject><subject>Gene expression</subject><subject>Hopf bifurcation</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Resonance</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMYydOlqUFWomHxGNtOe4YXKVJsR1Q_55AkdixGml07h3NIeSUwzkHUBcRQIiMQSYZBw6KFXtkxOWw4rJQ-2QElShZWSl5SI5iXAFwlYtsRNKE3uMnvUP7Zlof1_QRP9A0uKT1lk5DFyObeef66LuWzYL_wJYu2phM7RufttS0Szrr-rpBNu82jl561wdr0oBT39L0hvQy9DFiY1IX6NM2JlwfkwNnmognv3NMXq6vnqdzdvtws5hObpnNABJzoNBBWeZiqfIcMhDoakSwButKukoYVSB3aBy3mZAORCmFzW01_GZNpsSYnO16N6F77zEmver60A4nteASZF5IAQOV7Sj7_W5ApzfBr03Yag76267e2dWDXf1jVxdDSOxCcYDbVwx_1f-kvgA1Yn3K</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Zhao, Shuangrui</creator><creator>Yu, Pei</creator><creator>Jiang, Weihua</creator><creator>Wang, Hongbin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250201</creationdate><title>A New Mechanism Revealed by Cross-Diffusion-Driven Instability and Double-Hopf Bifurcation in the Brusselator System</title><author>Zhao, Shuangrui ; Yu, Pei ; Jiang, Weihua ; Wang, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f07ef08853d7550203efbee0caeb94f93a76e1feaf1c234f03843c5c9175ca273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Canonical forms</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Eigenvalues</topic><topic>Gene expression</topic><topic>Hopf bifurcation</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Resonance</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shuangrui</creatorcontrib><creatorcontrib>Yu, Pei</creatorcontrib><creatorcontrib>Jiang, Weihua</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shuangrui</au><au>Yu, Pei</au><au>Jiang, Weihua</au><au>Wang, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Mechanism Revealed by Cross-Diffusion-Driven Instability and Double-Hopf Bifurcation in the Brusselator System</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><artnum>21</artnum><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>The pattern dynamics of the Brusselator system with cross-diffusion and gene expression time delay are investigated. Conditions for cross-diffusion-driven instability are established, which reveal that the formation of patterns in the system with cross-diffusion does not follow the “short-range activation” and “long-range inhibition” mechanisms. Moreover, the conditions for the occurrence of Turing bifurcation, Hopf bifurcation, Turing–Hopf bifurcation, and double-Hopf bifurcation are obtained using eigenvalue analysis. The algorithms for calculating the normal forms of double-Hopf bifurcation are given using multiple timescale method, with the coefficients expressed explicitly in terms of the original system parameters. An essential contribution of this paper is the effect of the space element taken into account in this method, which results in that the normal forms of the double-Hopf bifurcation for the Brusselator system are divided into two categories: One is 1:3 strong resonance, and the other consists of other strong resonances, weak resonance, and non-resonance. Different types of spatiotemporal patterns are classified according to the exact partition of the parameter space. It is demonstrated that the Brusselator system can exhibit stable spatially inhomogeneous periodic and quasi-periodic orbits.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-024-10107-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8974 |
ispartof | Journal of nonlinear science, 2025-02, Vol.35 (1), Article 21 |
issn | 0938-8974 1432-1467 |
language | eng |
recordid | cdi_proquest_journals_3140456430 |
source | SpringerLink Journals |
subjects | Algorithms Analysis Canonical forms Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Eigenvalues Gene expression Hopf bifurcation Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Orbits Parameters Resonance Theoretical |
title | A New Mechanism Revealed by Cross-Diffusion-Driven Instability and Double-Hopf Bifurcation in the Brusselator System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Mechanism%20Revealed%20by%20Cross-Diffusion-Driven%20Instability%20and%20Double-Hopf%20Bifurcation%20in%20the%20Brusselator%20System&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Zhao,%20Shuangrui&rft.date=2025-02-01&rft.volume=35&rft.issue=1&rft.artnum=21&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-024-10107-6&rft_dat=%3Cproquest_cross%3E3140456430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140456430&rft_id=info:pmid/&rfr_iscdi=true |