Enhancing creep resistance in refractory high-entropy alloys: role of grain size and local chemical order
Refractory high-entropy alloys (RHEAs) are a promising class of materials with potential applications in extreme environments, where the dominant failure mode is thermal creep. The design of these alloys, therefore, requires an understanding of how their microstructure and local chemical distributio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Saifuddin Zafar Mashaekh Tausif Ehsan Sourav Das Suvro Islam, Mahmudul Mohammad Nasim Hasan |
description | Refractory high-entropy alloys (RHEAs) are a promising class of materials with potential applications in extreme environments, where the dominant failure mode is thermal creep. The design of these alloys, therefore, requires an understanding of how their microstructure and local chemical distribution affect creep behavior. In this study, we performed high-fidelity atomistic simulations using machine-learning interatomic potentials to explore the creep deformation of MoNbTaW RHEAs under a wide range of stress and temperature conditions. We parametrized grain size and local chemical order (LCO) to investigate the effects of these two important design variables, which are controllable during the alloy fabrication process. Our investigation revealed that resistance to creep deformation is enhanced by larger grain sizes and higher levels of LCO. This study highlights the importance of utilizing LCO in conjunction with other microstructural properties when designing RHEAs for extreme environment applications. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3138994727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138994727</sourcerecordid><originalsourceid>FETCH-proquest_journals_31389947273</originalsourceid><addsrcrecordid>eNqNikEKwjAQRYMgKOodBlwX2qRadSuKB3BfQpw2kZipk7iopzeCB3D1_3__TcRcKlUVu1rKmVjFeC_LUm4budmouXCnYHUwLvRgGHEAxuhiygjBhbw61iYRj2BdbwsMiWkYQXtPYzwAk0egDnrW2Y7ujaDDDTwZ7cFYfLhvIb4hL8W00z7i6pcLsT6frsdLMTA9XxhTe6cXh3y1qlK7_b5uZKP-sz7aFUiK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138994727</pqid></control><display><type>article</type><title>Enhancing creep resistance in refractory high-entropy alloys: role of grain size and local chemical order</title><source>Free E- Journals</source><creator>Saifuddin Zafar ; Mashaekh Tausif Ehsan ; Sourav Das Suvro ; Islam, Mahmudul ; Mohammad Nasim Hasan</creator><creatorcontrib>Saifuddin Zafar ; Mashaekh Tausif Ehsan ; Sourav Das Suvro ; Islam, Mahmudul ; Mohammad Nasim Hasan</creatorcontrib><description>Refractory high-entropy alloys (RHEAs) are a promising class of materials with potential applications in extreme environments, where the dominant failure mode is thermal creep. The design of these alloys, therefore, requires an understanding of how their microstructure and local chemical distribution affect creep behavior. In this study, we performed high-fidelity atomistic simulations using machine-learning interatomic potentials to explore the creep deformation of MoNbTaW RHEAs under a wide range of stress and temperature conditions. We parametrized grain size and local chemical order (LCO) to investigate the effects of these two important design variables, which are controllable during the alloy fabrication process. Our investigation revealed that resistance to creep deformation is enhanced by larger grain sizes and higher levels of LCO. This study highlights the importance of utilizing LCO in conjunction with other microstructural properties when designing RHEAs for extreme environment applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Creep strength ; Deformation effects ; Extreme environments ; Failure modes ; Grain size ; High entropy alloys ; Machine learning ; Microstructure</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Saifuddin Zafar</creatorcontrib><creatorcontrib>Mashaekh Tausif Ehsan</creatorcontrib><creatorcontrib>Sourav Das Suvro</creatorcontrib><creatorcontrib>Islam, Mahmudul</creatorcontrib><creatorcontrib>Mohammad Nasim Hasan</creatorcontrib><title>Enhancing creep resistance in refractory high-entropy alloys: role of grain size and local chemical order</title><title>arXiv.org</title><description>Refractory high-entropy alloys (RHEAs) are a promising class of materials with potential applications in extreme environments, where the dominant failure mode is thermal creep. The design of these alloys, therefore, requires an understanding of how their microstructure and local chemical distribution affect creep behavior. In this study, we performed high-fidelity atomistic simulations using machine-learning interatomic potentials to explore the creep deformation of MoNbTaW RHEAs under a wide range of stress and temperature conditions. We parametrized grain size and local chemical order (LCO) to investigate the effects of these two important design variables, which are controllable during the alloy fabrication process. Our investigation revealed that resistance to creep deformation is enhanced by larger grain sizes and higher levels of LCO. This study highlights the importance of utilizing LCO in conjunction with other microstructural properties when designing RHEAs for extreme environment applications.</description><subject>Creep strength</subject><subject>Deformation effects</subject><subject>Extreme environments</subject><subject>Failure modes</subject><subject>Grain size</subject><subject>High entropy alloys</subject><subject>Machine learning</subject><subject>Microstructure</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQRYMgKOodBlwX2qRadSuKB3BfQpw2kZipk7iopzeCB3D1_3__TcRcKlUVu1rKmVjFeC_LUm4budmouXCnYHUwLvRgGHEAxuhiygjBhbw61iYRj2BdbwsMiWkYQXtPYzwAk0egDnrW2Y7ujaDDDTwZ7cFYfLhvIb4hL8W00z7i6pcLsT6frsdLMTA9XxhTe6cXh3y1qlK7_b5uZKP-sz7aFUiK</recordid><startdate>20241208</startdate><enddate>20241208</enddate><creator>Saifuddin Zafar</creator><creator>Mashaekh Tausif Ehsan</creator><creator>Sourav Das Suvro</creator><creator>Islam, Mahmudul</creator><creator>Mohammad Nasim Hasan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241208</creationdate><title>Enhancing creep resistance in refractory high-entropy alloys: role of grain size and local chemical order</title><author>Saifuddin Zafar ; Mashaekh Tausif Ehsan ; Sourav Das Suvro ; Islam, Mahmudul ; Mohammad Nasim Hasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31389947273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Creep strength</topic><topic>Deformation effects</topic><topic>Extreme environments</topic><topic>Failure modes</topic><topic>Grain size</topic><topic>High entropy alloys</topic><topic>Machine learning</topic><topic>Microstructure</topic><toplevel>online_resources</toplevel><creatorcontrib>Saifuddin Zafar</creatorcontrib><creatorcontrib>Mashaekh Tausif Ehsan</creatorcontrib><creatorcontrib>Sourav Das Suvro</creatorcontrib><creatorcontrib>Islam, Mahmudul</creatorcontrib><creatorcontrib>Mohammad Nasim Hasan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saifuddin Zafar</au><au>Mashaekh Tausif Ehsan</au><au>Sourav Das Suvro</au><au>Islam, Mahmudul</au><au>Mohammad Nasim Hasan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enhancing creep resistance in refractory high-entropy alloys: role of grain size and local chemical order</atitle><jtitle>arXiv.org</jtitle><date>2024-12-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Refractory high-entropy alloys (RHEAs) are a promising class of materials with potential applications in extreme environments, where the dominant failure mode is thermal creep. The design of these alloys, therefore, requires an understanding of how their microstructure and local chemical distribution affect creep behavior. In this study, we performed high-fidelity atomistic simulations using machine-learning interatomic potentials to explore the creep deformation of MoNbTaW RHEAs under a wide range of stress and temperature conditions. We parametrized grain size and local chemical order (LCO) to investigate the effects of these two important design variables, which are controllable during the alloy fabrication process. Our investigation revealed that resistance to creep deformation is enhanced by larger grain sizes and higher levels of LCO. This study highlights the importance of utilizing LCO in conjunction with other microstructural properties when designing RHEAs for extreme environment applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3138994727 |
source | Free E- Journals |
subjects | Creep strength Deformation effects Extreme environments Failure modes Grain size High entropy alloys Machine learning Microstructure |
title | Enhancing creep resistance in refractory high-entropy alloys: role of grain size and local chemical order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enhancing%20creep%20resistance%20in%20refractory%20high-entropy%20alloys:%20role%20of%20grain%20size%20and%20local%20chemical%20order&rft.jtitle=arXiv.org&rft.au=Saifuddin%20Zafar&rft.date=2024-12-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3138994727%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138994727&rft_id=info:pmid/&rfr_iscdi=true |