Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement

Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth science informatics 2025, Vol.18 (1), p.2, Article 2
Hauptverfasser: Yao, Xinzhe, Liang, Xiuman, Yu, Haifeng, Liu, Zhendong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2
container_title Earth science informatics
container_volume 18
creator Yao, Xinzhe
Liang, Xiuman
Yu, Haifeng
Liu, Zhendong
description Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.
doi_str_mv 10.1007/s12145-024-01620-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3138993224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138993224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-fa4046a927fca55bbb4cd8dc0a0de02f3953f60ad436ef99943a8cbb5826ab03</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgqf0BVwHXozePmc4spVgVCm66D3fyaEfaTE1Si_16U0fUlZv74pxzOYeQawa3DGB6FxlnsiyAywJYxaE4npERq6t8kjU7_5mn4pJMYuxaEIxXgvN6RNwcY6JuH7veFy1Ga-jeGxsOmGyg3RZXllq_Rq_t1vpED11aUzS4S927pbrf9CHXEKxOWYGiN3n1KZxU__CuyIXDTbST7z4my_nDcvZULF4en2f3i0JzgFQ4lCArbPjUaSzLtm2lNrXRgGAscCeaUrgK0EhRWdc0jRRY67Yta15htjUmN4PsLvRvexuTeu33weePSjBRN002LTOKDygd-hiDdWoXstPwoRioU6JqSFTlRNVXouqYSWIgxQz2Kxt-pf9hfQLGfXv2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138993224</pqid></control><display><type>article</type><title>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</title><source>Springer Nature - Complete Springer Journals</source><creator>Yao, Xinzhe ; Liang, Xiuman ; Yu, Haifeng ; Liu, Zhendong</creator><creatorcontrib>Yao, Xinzhe ; Liang, Xiuman ; Yu, Haifeng ; Liu, Zhendong</creatorcontrib><description>Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.</description><identifier>ISSN: 1865-0473</identifier><identifier>EISSN: 1865-0481</identifier><identifier>DOI: 10.1007/s12145-024-01620-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Color ; Datasets ; Design ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Earth System Sciences ; Electromagnetic absorption ; Fuzzy sets ; Image contrast ; Image degradation ; Image enhancement ; Informatics ; Information Systems Applications (incl.Internet) ; Luminance ; Methods ; Modules ; Neural networks ; Ontology ; Photodegradation ; Sandstorms ; Simulation and Modeling ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Underwater ; Underwater exploration</subject><ispartof>Earth science informatics, 2025, Vol.18 (1), p.2, Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-fa4046a927fca55bbb4cd8dc0a0de02f3953f60ad436ef99943a8cbb5826ab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12145-024-01620-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12145-024-01620-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yao, Xinzhe</creatorcontrib><creatorcontrib>Liang, Xiuman</creatorcontrib><creatorcontrib>Yu, Haifeng</creatorcontrib><creatorcontrib>Liu, Zhendong</creatorcontrib><title>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</title><title>Earth science informatics</title><addtitle>Earth Sci Inform</addtitle><description>Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.</description><subject>Algorithms</subject><subject>Color</subject><subject>Datasets</subject><subject>Design</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Electromagnetic absorption</subject><subject>Fuzzy sets</subject><subject>Image contrast</subject><subject>Image degradation</subject><subject>Image enhancement</subject><subject>Informatics</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Luminance</subject><subject>Methods</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Photodegradation</subject><subject>Sandstorms</subject><subject>Simulation and Modeling</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Underwater</subject><subject>Underwater exploration</subject><issn>1865-0473</issn><issn>1865-0481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgqf0BVwHXozePmc4spVgVCm66D3fyaEfaTE1Si_16U0fUlZv74pxzOYeQawa3DGB6FxlnsiyAywJYxaE4npERq6t8kjU7_5mn4pJMYuxaEIxXgvN6RNwcY6JuH7veFy1Ga-jeGxsOmGyg3RZXllq_Rq_t1vpED11aUzS4S927pbrf9CHXEKxOWYGiN3n1KZxU__CuyIXDTbST7z4my_nDcvZULF4en2f3i0JzgFQ4lCArbPjUaSzLtm2lNrXRgGAscCeaUrgK0EhRWdc0jRRY67Yta15htjUmN4PsLvRvexuTeu33weePSjBRN002LTOKDygd-hiDdWoXstPwoRioU6JqSFTlRNVXouqYSWIgxQz2Kxt-pf9hfQLGfXv2</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yao, Xinzhe</creator><creator>Liang, Xiuman</creator><creator>Yu, Haifeng</creator><creator>Liu, Zhendong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TG</scope><scope>8FD</scope><scope>JQ2</scope><scope>KL.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2025</creationdate><title>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</title><author>Yao, Xinzhe ; Liang, Xiuman ; Yu, Haifeng ; Liu, Zhendong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-fa4046a927fca55bbb4cd8dc0a0de02f3953f60ad436ef99943a8cbb5826ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Datasets</topic><topic>Design</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Electromagnetic absorption</topic><topic>Fuzzy sets</topic><topic>Image contrast</topic><topic>Image degradation</topic><topic>Image enhancement</topic><topic>Informatics</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Luminance</topic><topic>Methods</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Photodegradation</topic><topic>Sandstorms</topic><topic>Simulation and Modeling</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Underwater</topic><topic>Underwater exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xinzhe</creatorcontrib><creatorcontrib>Liang, Xiuman</creatorcontrib><creatorcontrib>Yu, Haifeng</creatorcontrib><creatorcontrib>Liu, Zhendong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Earth science informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xinzhe</au><au>Liang, Xiuman</au><au>Yu, Haifeng</au><au>Liu, Zhendong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</atitle><jtitle>Earth science informatics</jtitle><stitle>Earth Sci Inform</stitle><date>2025</date><risdate>2025</risdate><volume>18</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>1865-0473</issn><eissn>1865-0481</eissn><abstract>Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12145-024-01620-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 1865-0473
ispartof Earth science informatics, 2025, Vol.18 (1), p.2, Article 2
issn 1865-0473
1865-0481
language eng
recordid cdi_proquest_journals_3138993224
source Springer Nature - Complete Springer Journals
subjects Algorithms
Color
Datasets
Design
Earth and Environmental Science
Earth science
Earth Sciences
Earth System Sciences
Electromagnetic absorption
Fuzzy sets
Image contrast
Image degradation
Image enhancement
Informatics
Information Systems Applications (incl.Internet)
Luminance
Methods
Modules
Neural networks
Ontology
Photodegradation
Sandstorms
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Underwater
Underwater exploration
title Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20fusion-based%20underwater%20image%20enhancement%20with%20adaptive%20color%20correction%20and%20contrast%20enhancement&rft.jtitle=Earth%20science%20informatics&rft.au=Yao,%20Xinzhe&rft.date=2025&rft.volume=18&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=1865-0473&rft.eissn=1865-0481&rft_id=info:doi/10.1007/s12145-024-01620-z&rft_dat=%3Cproquest_cross%3E3138993224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138993224&rft_id=info:pmid/&rfr_iscdi=true