Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement
Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propos...
Gespeichert in:
Veröffentlicht in: | Earth science informatics 2025, Vol.18 (1), p.2, Article 2 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | Earth science informatics |
container_volume | 18 |
creator | Yao, Xinzhe Liang, Xiuman Yu, Haifeng Liu, Zhendong |
description | Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm. |
doi_str_mv | 10.1007/s12145-024-01620-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3138993224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138993224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-fa4046a927fca55bbb4cd8dc0a0de02f3953f60ad436ef99943a8cbb5826ab03</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgqf0BVwHXozePmc4spVgVCm66D3fyaEfaTE1Si_16U0fUlZv74pxzOYeQawa3DGB6FxlnsiyAywJYxaE4npERq6t8kjU7_5mn4pJMYuxaEIxXgvN6RNwcY6JuH7veFy1Ga-jeGxsOmGyg3RZXllq_Rq_t1vpED11aUzS4S927pbrf9CHXEKxOWYGiN3n1KZxU__CuyIXDTbST7z4my_nDcvZULF4en2f3i0JzgFQ4lCArbPjUaSzLtm2lNrXRgGAscCeaUrgK0EhRWdc0jRRY67Yta15htjUmN4PsLvRvexuTeu33weePSjBRN002LTOKDygd-hiDdWoXstPwoRioU6JqSFTlRNVXouqYSWIgxQz2Kxt-pf9hfQLGfXv2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138993224</pqid></control><display><type>article</type><title>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</title><source>Springer Nature - Complete Springer Journals</source><creator>Yao, Xinzhe ; Liang, Xiuman ; Yu, Haifeng ; Liu, Zhendong</creator><creatorcontrib>Yao, Xinzhe ; Liang, Xiuman ; Yu, Haifeng ; Liu, Zhendong</creatorcontrib><description>Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.</description><identifier>ISSN: 1865-0473</identifier><identifier>EISSN: 1865-0481</identifier><identifier>DOI: 10.1007/s12145-024-01620-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Color ; Datasets ; Design ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Earth System Sciences ; Electromagnetic absorption ; Fuzzy sets ; Image contrast ; Image degradation ; Image enhancement ; Informatics ; Information Systems Applications (incl.Internet) ; Luminance ; Methods ; Modules ; Neural networks ; Ontology ; Photodegradation ; Sandstorms ; Simulation and Modeling ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Underwater ; Underwater exploration</subject><ispartof>Earth science informatics, 2025, Vol.18 (1), p.2, Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-fa4046a927fca55bbb4cd8dc0a0de02f3953f60ad436ef99943a8cbb5826ab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12145-024-01620-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12145-024-01620-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yao, Xinzhe</creatorcontrib><creatorcontrib>Liang, Xiuman</creatorcontrib><creatorcontrib>Yu, Haifeng</creatorcontrib><creatorcontrib>Liu, Zhendong</creatorcontrib><title>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</title><title>Earth science informatics</title><addtitle>Earth Sci Inform</addtitle><description>Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.</description><subject>Algorithms</subject><subject>Color</subject><subject>Datasets</subject><subject>Design</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Electromagnetic absorption</subject><subject>Fuzzy sets</subject><subject>Image contrast</subject><subject>Image degradation</subject><subject>Image enhancement</subject><subject>Informatics</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Luminance</subject><subject>Methods</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Photodegradation</subject><subject>Sandstorms</subject><subject>Simulation and Modeling</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Underwater</subject><subject>Underwater exploration</subject><issn>1865-0473</issn><issn>1865-0481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgqf0BVwHXozePmc4spVgVCm66D3fyaEfaTE1Si_16U0fUlZv74pxzOYeQawa3DGB6FxlnsiyAywJYxaE4npERq6t8kjU7_5mn4pJMYuxaEIxXgvN6RNwcY6JuH7veFy1Ga-jeGxsOmGyg3RZXllq_Rq_t1vpED11aUzS4S927pbrf9CHXEKxOWYGiN3n1KZxU__CuyIXDTbST7z4my_nDcvZULF4en2f3i0JzgFQ4lCArbPjUaSzLtm2lNrXRgGAscCeaUrgK0EhRWdc0jRRY67Yta15htjUmN4PsLvRvexuTeu33weePSjBRN002LTOKDygd-hiDdWoXstPwoRioU6JqSFTlRNVXouqYSWIgxQz2Kxt-pf9hfQLGfXv2</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yao, Xinzhe</creator><creator>Liang, Xiuman</creator><creator>Yu, Haifeng</creator><creator>Liu, Zhendong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TG</scope><scope>8FD</scope><scope>JQ2</scope><scope>KL.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2025</creationdate><title>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</title><author>Yao, Xinzhe ; Liang, Xiuman ; Yu, Haifeng ; Liu, Zhendong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-fa4046a927fca55bbb4cd8dc0a0de02f3953f60ad436ef99943a8cbb5826ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Datasets</topic><topic>Design</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Electromagnetic absorption</topic><topic>Fuzzy sets</topic><topic>Image contrast</topic><topic>Image degradation</topic><topic>Image enhancement</topic><topic>Informatics</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Luminance</topic><topic>Methods</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Photodegradation</topic><topic>Sandstorms</topic><topic>Simulation and Modeling</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Underwater</topic><topic>Underwater exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xinzhe</creatorcontrib><creatorcontrib>Liang, Xiuman</creatorcontrib><creatorcontrib>Yu, Haifeng</creatorcontrib><creatorcontrib>Liu, Zhendong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Earth science informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xinzhe</au><au>Liang, Xiuman</au><au>Yu, Haifeng</au><au>Liu, Zhendong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement</atitle><jtitle>Earth science informatics</jtitle><stitle>Earth Sci Inform</stitle><date>2025</date><risdate>2025</risdate><volume>18</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>1865-0473</issn><eissn>1865-0481</eissn><abstract>Since the scattering of suspension particles and the absorption of light by the water, single underwater image often suffers from some serious color cast and hazing problems, which hinder the application of advance vision technology in the underwater. To address these degradation problems, we propose a fast fusion-based method for underwater image enhancement. First, an adaptive color correction module with color cast judgment is designed to adjust the color cast of different scenes. Then, we design the dehazed and detail enhancement module to adjust the luminance channel of the image. Finally, a Laplace decomposition and multi-scale fusion strategy based on luminance channel is proposed to enhance the comprehensive contrast of the image. Our method is not dependent on complex physical imaging models while processing only at the channel level, which reduces the running time of the algorithm. The experimental results demonstrate that our algorithm outperforms the state-of-the-art algorithms of the same field. Besides, our method is equally applicable to the images of foggy and sandstorm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12145-024-01620-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-0473 |
ispartof | Earth science informatics, 2025, Vol.18 (1), p.2, Article 2 |
issn | 1865-0473 1865-0481 |
language | eng |
recordid | cdi_proquest_journals_3138993224 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Color Datasets Design Earth and Environmental Science Earth science Earth Sciences Earth System Sciences Electromagnetic absorption Fuzzy sets Image contrast Image degradation Image enhancement Informatics Information Systems Applications (incl.Internet) Luminance Methods Modules Neural networks Ontology Photodegradation Sandstorms Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Underwater Underwater exploration |
title | Fast fusion-based underwater image enhancement with adaptive color correction and contrast enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20fusion-based%20underwater%20image%20enhancement%20with%20adaptive%20color%20correction%20and%20contrast%20enhancement&rft.jtitle=Earth%20science%20informatics&rft.au=Yao,%20Xinzhe&rft.date=2025&rft.volume=18&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=1865-0473&rft.eissn=1865-0481&rft_id=info:doi/10.1007/s12145-024-01620-z&rft_dat=%3Cproquest_cross%3E3138993224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138993224&rft_id=info:pmid/&rfr_iscdi=true |