Facile Fabrication of Highly Crystallized, Air‐Stable, and Flexible Perovskite Micromesh Film Photodetector
Perovskite materials such as organic‐inorganic MAPbX3 (X = Cl, I, Br) have attracted broad interests in photoelectric applications, such as image sensors and photovoltaics. Here, a facile and general approach, called soft‐print solvent‐assisted evaporation crystallization (SSEC) is reported, for fab...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2024-12, Vol.12 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Xiong, Yuting Chen, Bo Xu, Xiuzhen Dai, Shijie Zhan, Yiqiang Xu, Xiaobin |
description | Perovskite materials such as organic‐inorganic MAPbX3 (X = Cl, I, Br) have attracted broad interests in photoelectric applications, such as image sensors and photovoltaics. Here, a facile and general approach, called soft‐print solvent‐assisted evaporation crystallization (SSEC) is reported, for fabrication of highly crystallized, air‐stable, and flexible perovskite micromesh films, including organic–inorganic (MAPbX3) and inorganic (CsPbX3) perovskite. Scanning and transmission electron microscopy (SEM/TEM) characterization reveals their high crystallinity without obvious grain boundaries. The photodetectors constructed based on MAPbI3 micromesh films exhibit a typical responsivity of ≈352 A W−1 and detectivity of ≈5.7 × 1013 Jones (at 650 nm in wavelength). The MAPbI3 micromesh film also shows good mechanical stability when bended at different bending radius, and after 800 bending cycles, they still exhibit highly reproducible photocurrent and on/off switching ratios. Furthermore, they are also air‐stable that they can survive for >20 days in high humid environments (65–75%) with |
doi_str_mv | 10.1002/adom.202401287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3135059434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135059434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-25b530ad1f15472cf3345a0c293b610795750310149f2340c79d1853bdf0ded63</originalsourceid><addsrcrecordid>eNqFkM9OwkAQxjdGEwly9byJV4qz_yg9ErRiAsFEPTfb7lYWWxZ3i1pPPoLP6JO4BKPePM1M8n0z3_wQOiUwIAD0XCpbDyhQDoSO4gPUoSQREYGYHP7pj1HP-xUAhIElPO6gOpWFqTROZe5MIRtj19iWeGoellWLJ671jawq86ZVH4-N-3z_uG1kXuk-lmuF00q_mjDhG-3ss380jcZzUzhba7_EqalqfLO0jVW60UVj3Qk6KmXlde-7dtF9enk3mUazxdX1ZDyLivBCHFGRCwZSkZIIHtOiZIwLCQVNWD4M0RMRC2AECE9KyjgUcaLISLBclaC0GrIuOtvv3Tj7tNW-yVZ269bhZMYIEyASznhQDfaqENh7p8ts40wtXZsRyHZUsx3V7IdqMCR7w0tA1v6jzsYXi_mv9wvnPXtv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135059434</pqid></control><display><type>article</type><title>Facile Fabrication of Highly Crystallized, Air‐Stable, and Flexible Perovskite Micromesh Film Photodetector</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiong, Yuting ; Chen, Bo ; Xu, Xiuzhen ; Dai, Shijie ; Zhan, Yiqiang ; Xu, Xiaobin</creator><creatorcontrib>Xiong, Yuting ; Chen, Bo ; Xu, Xiuzhen ; Dai, Shijie ; Zhan, Yiqiang ; Xu, Xiaobin</creatorcontrib><description>Perovskite materials such as organic‐inorganic MAPbX3 (X = Cl, I, Br) have attracted broad interests in photoelectric applications, such as image sensors and photovoltaics. Here, a facile and general approach, called soft‐print solvent‐assisted evaporation crystallization (SSEC) is reported, for fabrication of highly crystallized, air‐stable, and flexible perovskite micromesh films, including organic–inorganic (MAPbX3) and inorganic (CsPbX3) perovskite. Scanning and transmission electron microscopy (SEM/TEM) characterization reveals their high crystallinity without obvious grain boundaries. The photodetectors constructed based on MAPbI3 micromesh films exhibit a typical responsivity of ≈352 A W−1 and detectivity of ≈5.7 × 1013 Jones (at 650 nm in wavelength). The MAPbI3 micromesh film also shows good mechanical stability when bended at different bending radius, and after 800 bending cycles, they still exhibit highly reproducible photocurrent and on/off switching ratios. Furthermore, they are also air‐stable that they can survive for >20 days in high humid environments (65–75%) with <10% reduction in photocurrent. This work provides a facile and scalable approach for fabrication of highly crystallized, stable, and flexible perovskite micromesh films for a variety of optoelectronic applications with improved performance and durability.
Highly crystallized organic‐inorganic/inorganic perovskite micromesh films are prepared using a facile and general soft‐print solvent‐assisted evaporation crystallization approach without obvious grain boundaries. The perovskite micromesh films have tunable composition (both MAPbX3 and CsPbX3), pore width, period, and porosity. The MAPbI3 micromesh film also shows excellent photoelectric performance, mechanical flexibilities, and humidity resistance, which indicates their great potential in high‐performance flexible device applications.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401287</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bend radius ; Crystallization ; Cycle ratio ; flexible device ; Grain boundaries ; MAPbI3 ; micromesh film ; Optoelectronics ; organic–inorganic perovskite ; Perovskites ; photodetector ; Photoelectric effect ; Photoelectric emission ; Photoelectricity ; Photometers ; Photovoltaic cells</subject><ispartof>Advanced optical materials, 2024-12, Vol.12 (34), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2027-25b530ad1f15472cf3345a0c293b610795750310149f2340c79d1853bdf0ded63</cites><orcidid>0000-0002-3479-0130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202401287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202401287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xiong, Yuting</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Xu, Xiuzhen</creatorcontrib><creatorcontrib>Dai, Shijie</creatorcontrib><creatorcontrib>Zhan, Yiqiang</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><title>Facile Fabrication of Highly Crystallized, Air‐Stable, and Flexible Perovskite Micromesh Film Photodetector</title><title>Advanced optical materials</title><description>Perovskite materials such as organic‐inorganic MAPbX3 (X = Cl, I, Br) have attracted broad interests in photoelectric applications, such as image sensors and photovoltaics. Here, a facile and general approach, called soft‐print solvent‐assisted evaporation crystallization (SSEC) is reported, for fabrication of highly crystallized, air‐stable, and flexible perovskite micromesh films, including organic–inorganic (MAPbX3) and inorganic (CsPbX3) perovskite. Scanning and transmission electron microscopy (SEM/TEM) characterization reveals their high crystallinity without obvious grain boundaries. The photodetectors constructed based on MAPbI3 micromesh films exhibit a typical responsivity of ≈352 A W−1 and detectivity of ≈5.7 × 1013 Jones (at 650 nm in wavelength). The MAPbI3 micromesh film also shows good mechanical stability when bended at different bending radius, and after 800 bending cycles, they still exhibit highly reproducible photocurrent and on/off switching ratios. Furthermore, they are also air‐stable that they can survive for >20 days in high humid environments (65–75%) with <10% reduction in photocurrent. This work provides a facile and scalable approach for fabrication of highly crystallized, stable, and flexible perovskite micromesh films for a variety of optoelectronic applications with improved performance and durability.
Highly crystallized organic‐inorganic/inorganic perovskite micromesh films are prepared using a facile and general soft‐print solvent‐assisted evaporation crystallization approach without obvious grain boundaries. The perovskite micromesh films have tunable composition (both MAPbX3 and CsPbX3), pore width, period, and porosity. The MAPbI3 micromesh film also shows excellent photoelectric performance, mechanical flexibilities, and humidity resistance, which indicates their great potential in high‐performance flexible device applications.</description><subject>Bend radius</subject><subject>Crystallization</subject><subject>Cycle ratio</subject><subject>flexible device</subject><subject>Grain boundaries</subject><subject>MAPbI3</subject><subject>micromesh film</subject><subject>Optoelectronics</subject><subject>organic–inorganic perovskite</subject><subject>Perovskites</subject><subject>photodetector</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectricity</subject><subject>Photometers</subject><subject>Photovoltaic cells</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwkAQxjdGEwly9byJV4qz_yg9ErRiAsFEPTfb7lYWWxZ3i1pPPoLP6JO4BKPePM1M8n0z3_wQOiUwIAD0XCpbDyhQDoSO4gPUoSQREYGYHP7pj1HP-xUAhIElPO6gOpWFqTROZe5MIRtj19iWeGoellWLJ671jawq86ZVH4-N-3z_uG1kXuk-lmuF00q_mjDhG-3ss380jcZzUzhba7_EqalqfLO0jVW60UVj3Qk6KmXlde-7dtF9enk3mUazxdX1ZDyLivBCHFGRCwZSkZIIHtOiZIwLCQVNWD4M0RMRC2AECE9KyjgUcaLISLBclaC0GrIuOtvv3Tj7tNW-yVZ269bhZMYIEyASznhQDfaqENh7p8ts40wtXZsRyHZUsx3V7IdqMCR7w0tA1v6jzsYXi_mv9wvnPXtv</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Xiong, Yuting</creator><creator>Chen, Bo</creator><creator>Xu, Xiuzhen</creator><creator>Dai, Shijie</creator><creator>Zhan, Yiqiang</creator><creator>Xu, Xiaobin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3479-0130</orcidid></search><sort><creationdate>20241201</creationdate><title>Facile Fabrication of Highly Crystallized, Air‐Stable, and Flexible Perovskite Micromesh Film Photodetector</title><author>Xiong, Yuting ; Chen, Bo ; Xu, Xiuzhen ; Dai, Shijie ; Zhan, Yiqiang ; Xu, Xiaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-25b530ad1f15472cf3345a0c293b610795750310149f2340c79d1853bdf0ded63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bend radius</topic><topic>Crystallization</topic><topic>Cycle ratio</topic><topic>flexible device</topic><topic>Grain boundaries</topic><topic>MAPbI3</topic><topic>micromesh film</topic><topic>Optoelectronics</topic><topic>organic–inorganic perovskite</topic><topic>Perovskites</topic><topic>photodetector</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectricity</topic><topic>Photometers</topic><topic>Photovoltaic cells</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yuting</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Xu, Xiuzhen</creatorcontrib><creatorcontrib>Dai, Shijie</creatorcontrib><creatorcontrib>Zhan, Yiqiang</creatorcontrib><creatorcontrib>Xu, Xiaobin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yuting</au><au>Chen, Bo</au><au>Xu, Xiuzhen</au><au>Dai, Shijie</au><au>Zhan, Yiqiang</au><au>Xu, Xiaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Fabrication of Highly Crystallized, Air‐Stable, and Flexible Perovskite Micromesh Film Photodetector</atitle><jtitle>Advanced optical materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>12</volume><issue>34</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Perovskite materials such as organic‐inorganic MAPbX3 (X = Cl, I, Br) have attracted broad interests in photoelectric applications, such as image sensors and photovoltaics. Here, a facile and general approach, called soft‐print solvent‐assisted evaporation crystallization (SSEC) is reported, for fabrication of highly crystallized, air‐stable, and flexible perovskite micromesh films, including organic–inorganic (MAPbX3) and inorganic (CsPbX3) perovskite. Scanning and transmission electron microscopy (SEM/TEM) characterization reveals their high crystallinity without obvious grain boundaries. The photodetectors constructed based on MAPbI3 micromesh films exhibit a typical responsivity of ≈352 A W−1 and detectivity of ≈5.7 × 1013 Jones (at 650 nm in wavelength). The MAPbI3 micromesh film also shows good mechanical stability when bended at different bending radius, and after 800 bending cycles, they still exhibit highly reproducible photocurrent and on/off switching ratios. Furthermore, they are also air‐stable that they can survive for >20 days in high humid environments (65–75%) with <10% reduction in photocurrent. This work provides a facile and scalable approach for fabrication of highly crystallized, stable, and flexible perovskite micromesh films for a variety of optoelectronic applications with improved performance and durability.
Highly crystallized organic‐inorganic/inorganic perovskite micromesh films are prepared using a facile and general soft‐print solvent‐assisted evaporation crystallization approach without obvious grain boundaries. The perovskite micromesh films have tunable composition (both MAPbX3 and CsPbX3), pore width, period, and porosity. The MAPbI3 micromesh film also shows excellent photoelectric performance, mechanical flexibilities, and humidity resistance, which indicates their great potential in high‐performance flexible device applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401287</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3479-0130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-12, Vol.12 (34), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3135059434 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bend radius Crystallization Cycle ratio flexible device Grain boundaries MAPbI3 micromesh film Optoelectronics organic–inorganic perovskite Perovskites photodetector Photoelectric effect Photoelectric emission Photoelectricity Photometers Photovoltaic cells |
title | Facile Fabrication of Highly Crystallized, Air‐Stable, and Flexible Perovskite Micromesh Film Photodetector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Fabrication%20of%20Highly%20Crystallized,%20Air%E2%80%90Stable,%20and%20Flexible%20Perovskite%20Micromesh%20Film%20Photodetector&rft.jtitle=Advanced%20optical%20materials&rft.au=Xiong,%20Yuting&rft.date=2024-12-01&rft.volume=12&rft.issue=34&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401287&rft_dat=%3Cproquest_cross%3E3135059434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135059434&rft_id=info:pmid/&rfr_iscdi=true |