Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets
Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel str...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-12, Vol.34 (49), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Song, Chunlei Tao, Xianzan Chen, Yicheng Mao, Kaihao Tao, Ye Ge, Zhenyou Wen, Hongyan Chen, Gaofeng Li, Biao Xue, Rui Jiang, Xikai Zheng, Xu Ren, Yukun |
description | Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs.
A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials. |
doi_str_mv | 10.1002/adfm.202409341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3135059053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135059053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2421-c0f7982a0297d9edd31d8d00723de2f6551ae90154cd73054542f484a3a045983</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgdct565Ncmy9A4tuqjgLkwzJzolnaSTCdKdj-Az-iSmVOrSxblw-P7_wE_IPYM-A-CP2uS7PgcuIRGSXZAOG7BBTwCPL887e70mN3W9BWBRJGSHNJMCs-DLTFe2KLS34fD9-bVwpsnQ0Hnjvc20w_ZmXdt0W-tmg3Ti9KbAmoZ3pDN06HWwpaPaGfqsQ0DvrHujZU6Xdt9YQ1cYdEHHvqwKDPUtucp1UePd7-ySl-lkPZr3lk-zxWi47GVcctbLII-SmGvgSWQSNEYwExuAiAuDPB8oxTQmwJTMTCRASSV5LmOphQapklh0ycPJt_LlvsE6pNuy8a59mQomFKgElGip_onKfFnXHvO08nan_SFlkB6jTY_RpudoW0FyEnzYAg__0OlwPF39aX8AkeKBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135059053</pqid></control><display><type>article</type><title>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Chunlei ; Tao, Xianzan ; Chen, Yicheng ; Mao, Kaihao ; Tao, Ye ; Ge, Zhenyou ; Wen, Hongyan ; Chen, Gaofeng ; Li, Biao ; Xue, Rui ; Jiang, Xikai ; Zheng, Xu ; Ren, Yukun</creator><creatorcontrib>Song, Chunlei ; Tao, Xianzan ; Chen, Yicheng ; Mao, Kaihao ; Tao, Ye ; Ge, Zhenyou ; Wen, Hongyan ; Chen, Gaofeng ; Li, Biao ; Xue, Rui ; Jiang, Xikai ; Zheng, Xu ; Ren, Yukun</creatorcontrib><description>Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs.
A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202409341</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Automation ; Composite materials ; Controllability ; Deformation effects ; Dimensionless analysis ; droplet patterning ; Droplets ; Electric fields ; Electrocapillarity ; Electrolytes ; interfacial tension ; iontronic sensor ; liquid metal droplet ; Liquid metals ; Parameter sensitivity ; Robotics ; Surface tension ; Vortex rings</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (49), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2421-c0f7982a0297d9edd31d8d00723de2f6551ae90154cd73054542f484a3a045983</cites><orcidid>0009-0007-7433-4678 ; 0000-0002-0167-1274 ; 0000-0001-5601-8339 ; 0000-0002-9492-3345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202409341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202409341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Song, Chunlei</creatorcontrib><creatorcontrib>Tao, Xianzan</creatorcontrib><creatorcontrib>Chen, Yicheng</creatorcontrib><creatorcontrib>Mao, Kaihao</creatorcontrib><creatorcontrib>Tao, Ye</creatorcontrib><creatorcontrib>Ge, Zhenyou</creatorcontrib><creatorcontrib>Wen, Hongyan</creatorcontrib><creatorcontrib>Chen, Gaofeng</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Xue, Rui</creatorcontrib><creatorcontrib>Jiang, Xikai</creatorcontrib><creatorcontrib>Zheng, Xu</creatorcontrib><creatorcontrib>Ren, Yukun</creatorcontrib><title>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</title><title>Advanced functional materials</title><description>Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs.
A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.</description><subject>Automation</subject><subject>Composite materials</subject><subject>Controllability</subject><subject>Deformation effects</subject><subject>Dimensionless analysis</subject><subject>droplet patterning</subject><subject>Droplets</subject><subject>Electric fields</subject><subject>Electrocapillarity</subject><subject>Electrolytes</subject><subject>interfacial tension</subject><subject>iontronic sensor</subject><subject>liquid metal droplet</subject><subject>Liquid metals</subject><subject>Parameter sensitivity</subject><subject>Robotics</subject><subject>Surface tension</subject><subject>Vortex rings</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsFa3rgdct565Ncmy9A4tuqjgLkwzJzolnaSTCdKdj-Az-iSmVOrSxblw-P7_wE_IPYM-A-CP2uS7PgcuIRGSXZAOG7BBTwCPL887e70mN3W9BWBRJGSHNJMCs-DLTFe2KLS34fD9-bVwpsnQ0Hnjvc20w_ZmXdt0W-tmg3Ti9KbAmoZ3pDN06HWwpaPaGfqsQ0DvrHujZU6Xdt9YQ1cYdEHHvqwKDPUtucp1UePd7-ySl-lkPZr3lk-zxWi47GVcctbLII-SmGvgSWQSNEYwExuAiAuDPB8oxTQmwJTMTCRASSV5LmOphQapklh0ycPJt_LlvsE6pNuy8a59mQomFKgElGip_onKfFnXHvO08nan_SFlkB6jTY_RpudoW0FyEnzYAg__0OlwPF39aX8AkeKBbA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Song, Chunlei</creator><creator>Tao, Xianzan</creator><creator>Chen, Yicheng</creator><creator>Mao, Kaihao</creator><creator>Tao, Ye</creator><creator>Ge, Zhenyou</creator><creator>Wen, Hongyan</creator><creator>Chen, Gaofeng</creator><creator>Li, Biao</creator><creator>Xue, Rui</creator><creator>Jiang, Xikai</creator><creator>Zheng, Xu</creator><creator>Ren, Yukun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-7433-4678</orcidid><orcidid>https://orcid.org/0000-0002-0167-1274</orcidid><orcidid>https://orcid.org/0000-0001-5601-8339</orcidid><orcidid>https://orcid.org/0000-0002-9492-3345</orcidid></search><sort><creationdate>20241201</creationdate><title>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</title><author>Song, Chunlei ; Tao, Xianzan ; Chen, Yicheng ; Mao, Kaihao ; Tao, Ye ; Ge, Zhenyou ; Wen, Hongyan ; Chen, Gaofeng ; Li, Biao ; Xue, Rui ; Jiang, Xikai ; Zheng, Xu ; Ren, Yukun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2421-c0f7982a0297d9edd31d8d00723de2f6551ae90154cd73054542f484a3a045983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Composite materials</topic><topic>Controllability</topic><topic>Deformation effects</topic><topic>Dimensionless analysis</topic><topic>droplet patterning</topic><topic>Droplets</topic><topic>Electric fields</topic><topic>Electrocapillarity</topic><topic>Electrolytes</topic><topic>interfacial tension</topic><topic>iontronic sensor</topic><topic>liquid metal droplet</topic><topic>Liquid metals</topic><topic>Parameter sensitivity</topic><topic>Robotics</topic><topic>Surface tension</topic><topic>Vortex rings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chunlei</creatorcontrib><creatorcontrib>Tao, Xianzan</creatorcontrib><creatorcontrib>Chen, Yicheng</creatorcontrib><creatorcontrib>Mao, Kaihao</creatorcontrib><creatorcontrib>Tao, Ye</creatorcontrib><creatorcontrib>Ge, Zhenyou</creatorcontrib><creatorcontrib>Wen, Hongyan</creatorcontrib><creatorcontrib>Chen, Gaofeng</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Xue, Rui</creatorcontrib><creatorcontrib>Jiang, Xikai</creatorcontrib><creatorcontrib>Zheng, Xu</creatorcontrib><creatorcontrib>Ren, Yukun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Chunlei</au><au>Tao, Xianzan</au><au>Chen, Yicheng</au><au>Mao, Kaihao</au><au>Tao, Ye</au><au>Ge, Zhenyou</au><au>Wen, Hongyan</au><au>Chen, Gaofeng</au><au>Li, Biao</au><au>Xue, Rui</au><au>Jiang, Xikai</au><au>Zheng, Xu</au><au>Ren, Yukun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>34</volume><issue>49</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs.
A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202409341</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0007-7433-4678</orcidid><orcidid>https://orcid.org/0000-0002-0167-1274</orcidid><orcidid>https://orcid.org/0000-0001-5601-8339</orcidid><orcidid>https://orcid.org/0000-0002-9492-3345</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-12, Vol.34 (49), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3135059053 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Automation Composite materials Controllability Deformation effects Dimensionless analysis droplet patterning Droplets Electric fields Electrocapillarity Electrolytes interfacial tension iontronic sensor liquid metal droplet Liquid metals Parameter sensitivity Robotics Surface tension Vortex rings |
title | Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocapillarity%E2%80%90Induced%20Hurricane%E2%80%90in%E2%80%90a%E2%80%90Tube%20Enables%20the%20Generation%20and%20Patterning%20of%20Liquid%20Metal%20Droplets&rft.jtitle=Advanced%20functional%20materials&rft.au=Song,%20Chunlei&rft.date=2024-12-01&rft.volume=34&rft.issue=49&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202409341&rft_dat=%3Cproquest_cross%3E3135059053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135059053&rft_id=info:pmid/&rfr_iscdi=true |