Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets

Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12, Vol.34 (49), p.n/a
Hauptverfasser: Song, Chunlei, Tao, Xianzan, Chen, Yicheng, Mao, Kaihao, Tao, Ye, Ge, Zhenyou, Wen, Hongyan, Chen, Gaofeng, Li, Biao, Xue, Rui, Jiang, Xikai, Zheng, Xu, Ren, Yukun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page
container_title Advanced functional materials
container_volume 34
creator Song, Chunlei
Tao, Xianzan
Chen, Yicheng
Mao, Kaihao
Tao, Ye
Ge, Zhenyou
Wen, Hongyan
Chen, Gaofeng
Li, Biao
Xue, Rui
Jiang, Xikai
Zheng, Xu
Ren, Yukun
description Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs. A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.
doi_str_mv 10.1002/adfm.202409341
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3135059053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135059053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2421-c0f7982a0297d9edd31d8d00723de2f6551ae90154cd73054542f484a3a045983</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgdct565Ncmy9A4tuqjgLkwzJzolnaSTCdKdj-Az-iSmVOrSxblw-P7_wE_IPYM-A-CP2uS7PgcuIRGSXZAOG7BBTwCPL887e70mN3W9BWBRJGSHNJMCs-DLTFe2KLS34fD9-bVwpsnQ0Hnjvc20w_ZmXdt0W-tmg3Ti9KbAmoZ3pDN06HWwpaPaGfqsQ0DvrHujZU6Xdt9YQ1cYdEHHvqwKDPUtucp1UePd7-ySl-lkPZr3lk-zxWi47GVcctbLII-SmGvgSWQSNEYwExuAiAuDPB8oxTQmwJTMTCRASSV5LmOphQapklh0ycPJt_LlvsE6pNuy8a59mQomFKgElGip_onKfFnXHvO08nan_SFlkB6jTY_RpudoW0FyEnzYAg__0OlwPF39aX8AkeKBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135059053</pqid></control><display><type>article</type><title>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Chunlei ; Tao, Xianzan ; Chen, Yicheng ; Mao, Kaihao ; Tao, Ye ; Ge, Zhenyou ; Wen, Hongyan ; Chen, Gaofeng ; Li, Biao ; Xue, Rui ; Jiang, Xikai ; Zheng, Xu ; Ren, Yukun</creator><creatorcontrib>Song, Chunlei ; Tao, Xianzan ; Chen, Yicheng ; Mao, Kaihao ; Tao, Ye ; Ge, Zhenyou ; Wen, Hongyan ; Chen, Gaofeng ; Li, Biao ; Xue, Rui ; Jiang, Xikai ; Zheng, Xu ; Ren, Yukun</creatorcontrib><description>Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs. A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202409341</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Automation ; Composite materials ; Controllability ; Deformation effects ; Dimensionless analysis ; droplet patterning ; Droplets ; Electric fields ; Electrocapillarity ; Electrolytes ; interfacial tension ; iontronic sensor ; liquid metal droplet ; Liquid metals ; Parameter sensitivity ; Robotics ; Surface tension ; Vortex rings</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (49), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2421-c0f7982a0297d9edd31d8d00723de2f6551ae90154cd73054542f484a3a045983</cites><orcidid>0009-0007-7433-4678 ; 0000-0002-0167-1274 ; 0000-0001-5601-8339 ; 0000-0002-9492-3345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202409341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202409341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Song, Chunlei</creatorcontrib><creatorcontrib>Tao, Xianzan</creatorcontrib><creatorcontrib>Chen, Yicheng</creatorcontrib><creatorcontrib>Mao, Kaihao</creatorcontrib><creatorcontrib>Tao, Ye</creatorcontrib><creatorcontrib>Ge, Zhenyou</creatorcontrib><creatorcontrib>Wen, Hongyan</creatorcontrib><creatorcontrib>Chen, Gaofeng</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Xue, Rui</creatorcontrib><creatorcontrib>Jiang, Xikai</creatorcontrib><creatorcontrib>Zheng, Xu</creatorcontrib><creatorcontrib>Ren, Yukun</creatorcontrib><title>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</title><title>Advanced functional materials</title><description>Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs. A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.</description><subject>Automation</subject><subject>Composite materials</subject><subject>Controllability</subject><subject>Deformation effects</subject><subject>Dimensionless analysis</subject><subject>droplet patterning</subject><subject>Droplets</subject><subject>Electric fields</subject><subject>Electrocapillarity</subject><subject>Electrolytes</subject><subject>interfacial tension</subject><subject>iontronic sensor</subject><subject>liquid metal droplet</subject><subject>Liquid metals</subject><subject>Parameter sensitivity</subject><subject>Robotics</subject><subject>Surface tension</subject><subject>Vortex rings</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsFa3rgdct565Ncmy9A4tuqjgLkwzJzolnaSTCdKdj-Az-iSmVOrSxblw-P7_wE_IPYM-A-CP2uS7PgcuIRGSXZAOG7BBTwCPL887e70mN3W9BWBRJGSHNJMCs-DLTFe2KLS34fD9-bVwpsnQ0Hnjvc20w_ZmXdt0W-tmg3Ti9KbAmoZ3pDN06HWwpaPaGfqsQ0DvrHujZU6Xdt9YQ1cYdEHHvqwKDPUtucp1UePd7-ySl-lkPZr3lk-zxWi47GVcctbLII-SmGvgSWQSNEYwExuAiAuDPB8oxTQmwJTMTCRASSV5LmOphQapklh0ycPJt_LlvsE6pNuy8a59mQomFKgElGip_onKfFnXHvO08nan_SFlkB6jTY_RpudoW0FyEnzYAg__0OlwPF39aX8AkeKBbA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Song, Chunlei</creator><creator>Tao, Xianzan</creator><creator>Chen, Yicheng</creator><creator>Mao, Kaihao</creator><creator>Tao, Ye</creator><creator>Ge, Zhenyou</creator><creator>Wen, Hongyan</creator><creator>Chen, Gaofeng</creator><creator>Li, Biao</creator><creator>Xue, Rui</creator><creator>Jiang, Xikai</creator><creator>Zheng, Xu</creator><creator>Ren, Yukun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-7433-4678</orcidid><orcidid>https://orcid.org/0000-0002-0167-1274</orcidid><orcidid>https://orcid.org/0000-0001-5601-8339</orcidid><orcidid>https://orcid.org/0000-0002-9492-3345</orcidid></search><sort><creationdate>20241201</creationdate><title>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</title><author>Song, Chunlei ; Tao, Xianzan ; Chen, Yicheng ; Mao, Kaihao ; Tao, Ye ; Ge, Zhenyou ; Wen, Hongyan ; Chen, Gaofeng ; Li, Biao ; Xue, Rui ; Jiang, Xikai ; Zheng, Xu ; Ren, Yukun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2421-c0f7982a0297d9edd31d8d00723de2f6551ae90154cd73054542f484a3a045983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Composite materials</topic><topic>Controllability</topic><topic>Deformation effects</topic><topic>Dimensionless analysis</topic><topic>droplet patterning</topic><topic>Droplets</topic><topic>Electric fields</topic><topic>Electrocapillarity</topic><topic>Electrolytes</topic><topic>interfacial tension</topic><topic>iontronic sensor</topic><topic>liquid metal droplet</topic><topic>Liquid metals</topic><topic>Parameter sensitivity</topic><topic>Robotics</topic><topic>Surface tension</topic><topic>Vortex rings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chunlei</creatorcontrib><creatorcontrib>Tao, Xianzan</creatorcontrib><creatorcontrib>Chen, Yicheng</creatorcontrib><creatorcontrib>Mao, Kaihao</creatorcontrib><creatorcontrib>Tao, Ye</creatorcontrib><creatorcontrib>Ge, Zhenyou</creatorcontrib><creatorcontrib>Wen, Hongyan</creatorcontrib><creatorcontrib>Chen, Gaofeng</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Xue, Rui</creatorcontrib><creatorcontrib>Jiang, Xikai</creatorcontrib><creatorcontrib>Zheng, Xu</creatorcontrib><creatorcontrib>Ren, Yukun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Chunlei</au><au>Tao, Xianzan</au><au>Chen, Yicheng</au><au>Mao, Kaihao</au><au>Tao, Ye</au><au>Ge, Zhenyou</au><au>Wen, Hongyan</au><au>Chen, Gaofeng</au><au>Li, Biao</au><au>Xue, Rui</au><au>Jiang, Xikai</au><au>Zheng, Xu</au><au>Ren, Yukun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>34</volume><issue>49</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Room‐temperature liquid metal droplets (LMDs) are a promising material for various applications in soft robotics, active droplets, and biomedical devices. However, controllable and high‐throughput production of LMDs remains challenging due to their high surface tension and density. Here, a novel strategy is presented to produce LMDs by combining electric field‐induced electrocapillary flow with an external flow field. The basic mechanism is that the electrocapillary flow induced at the LMD/electrolyte interface forms a vortex ring in the electrolyte, creating a hurricane‐like effect in the tube, which in turn causes the liquid metal to deform and eventually pinch off into small droplets. It is demonstrated that droplet size and generation frequency can be controlled precisely by adjusting the applied electric current, flow rate, and surfactant concentration, establishing a relationship between radius and experimental parameters through dimensionless analysis. More importantly, this strategy can handle pendant droplets and facilitate programmable droplet patterning. Leveraging established relationships, flexible control over droplet size and spacing during patterning is attained. Furthermore, an iontronic pressure‐sensitive device based on LMDs and hydrogel is developed to showcase the versatility of the approach. This technique opens up new opportunities for fabricating soft circuits, composite materials, and other functional devices with LMDs. A novel method for producing room‐temperature liquid metal droplets in both horizontal and vertical directions is introduced, utilizing the hurricane‐in‐a‐tube effect formed by electric field‐induced electrocapillary flow, combined with an external flow field. This technique is demonstrated through programmable droplet patterning and the development of an iontronic pressure‐sensitive device, highlighting its potential for creating soft circuits and composite materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202409341</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0007-7433-4678</orcidid><orcidid>https://orcid.org/0000-0002-0167-1274</orcidid><orcidid>https://orcid.org/0000-0001-5601-8339</orcidid><orcidid>https://orcid.org/0000-0002-9492-3345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12, Vol.34 (49), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3135059053
source Wiley Online Library Journals Frontfile Complete
subjects Automation
Composite materials
Controllability
Deformation effects
Dimensionless analysis
droplet patterning
Droplets
Electric fields
Electrocapillarity
Electrolytes
interfacial tension
iontronic sensor
liquid metal droplet
Liquid metals
Parameter sensitivity
Robotics
Surface tension
Vortex rings
title Electrocapillarity‐Induced Hurricane‐in‐a‐Tube Enables the Generation and Patterning of Liquid Metal Droplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocapillarity%E2%80%90Induced%20Hurricane%E2%80%90in%E2%80%90a%E2%80%90Tube%20Enables%20the%20Generation%20and%20Patterning%20of%20Liquid%20Metal%20Droplets&rft.jtitle=Advanced%20functional%20materials&rft.au=Song,%20Chunlei&rft.date=2024-12-01&rft.volume=34&rft.issue=49&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202409341&rft_dat=%3Cproquest_cross%3E3135059053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135059053&rft_id=info:pmid/&rfr_iscdi=true