Randomization of a Laser Wavefront by the Turbulent Gas-Puff Z-Pinch Plasma Column

In this paper, we present the first direct experimental evidence supported by numerical modeling of a turbulent plasma column formed during a gas-puff z-pinch implosion generated by COBRA current. Utilizing an imaging refractometer, we show a significant decrease in spatial autocorrelation of the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Rososhek, A, Lavine, E S, Kusse, B R, Potter, W M, Hammer, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rososhek, A
Lavine, E S
Kusse, B R
Potter, W M
Hammer, D A
description In this paper, we present the first direct experimental evidence supported by numerical modeling of a turbulent plasma column formed during a gas-puff z-pinch implosion generated by COBRA current. Utilizing an imaging refractometer, we show a significant decrease in spatial autocorrelation of the laser field and the appearance of a laser speckle pattern shortly before stagnation. The intensity distribution of the speckles measured during different shot campaigns while employing long and short COBRA pulses follows the speckle statistics satisfactorily. The imaging refractometer data is proportional to the integral over electron density gradients; hence, the measured phase randomization of the individual plane waves comprising the laser field implies random density distribution. To validate this, the Beam Propagation Method code simulates the laser beam propagation through different artificial density distributions with various average fluctuation scales and generates synthetic imaging refractometer data. The results reproduce similar trends in the experimental data, such as the increasing vertical width for the decreasing average spatial scale of the fluctuations and decreasing spatial correlation length of the laser field. Therefore, during the gas-puff z-pinch implosion process, it is likely that the plasma flow is almost always turbulent with the average spatial scale of the turbulent density fluctuations decreasing towards stagnation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3134990242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134990242</sourcerecordid><originalsourceid>FETCH-proquest_journals_31349902423</originalsourceid><addsrcrecordid>eNqNik8LgjAcQEcQJOV3-EHnwdy08iz9OXQQEYIu8rM2VHSrzQX16fPQB-j04L03IwEXIqK7mPMFCZ3rGGN8s-VJIgJSFKjvZmg_OLZGg1GAcEYnLVzwJZU1eoT6DWMjofS29r2cxBEdzb1ScKV5q28N5D26ASEzvR_0iswV9k6GPy7J-rAvsxN9WPP00o1VZ7zVU6pEJOI0ZTzm4r_rC4YHPsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134990242</pqid></control><display><type>article</type><title>Randomization of a Laser Wavefront by the Turbulent Gas-Puff Z-Pinch Plasma Column</title><source>Free E- Journals</source><creator>Rososhek, A ; Lavine, E S ; Kusse, B R ; Potter, W M ; Hammer, D A</creator><creatorcontrib>Rososhek, A ; Lavine, E S ; Kusse, B R ; Potter, W M ; Hammer, D A</creatorcontrib><description>In this paper, we present the first direct experimental evidence supported by numerical modeling of a turbulent plasma column formed during a gas-puff z-pinch implosion generated by COBRA current. Utilizing an imaging refractometer, we show a significant decrease in spatial autocorrelation of the laser field and the appearance of a laser speckle pattern shortly before stagnation. The intensity distribution of the speckles measured during different shot campaigns while employing long and short COBRA pulses follows the speckle statistics satisfactorily. The imaging refractometer data is proportional to the integral over electron density gradients; hence, the measured phase randomization of the individual plane waves comprising the laser field implies random density distribution. To validate this, the Beam Propagation Method code simulates the laser beam propagation through different artificial density distributions with various average fluctuation scales and generates synthetic imaging refractometer data. The results reproduce similar trends in the experimental data, such as the increasing vertical width for the decreasing average spatial scale of the fluctuations and decreasing spatial correlation length of the laser field. Therefore, during the gas-puff z-pinch implosion process, it is likely that the plasma flow is almost always turbulent with the average spatial scale of the turbulent density fluctuations decreasing towards stagnation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density distribution ; Density gradients ; Electron density ; Gas puff Z pinch plasmas ; Imaging ; Implosions ; Laser beams ; Lasers ; Numerical models ; Plane waves ; Randomization ; Spatial data ; Speckle patterns ; Stagnation ; Turbulent flow ; Wave fronts ; Wave propagation</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rososhek, A</creatorcontrib><creatorcontrib>Lavine, E S</creatorcontrib><creatorcontrib>Kusse, B R</creatorcontrib><creatorcontrib>Potter, W M</creatorcontrib><creatorcontrib>Hammer, D A</creatorcontrib><title>Randomization of a Laser Wavefront by the Turbulent Gas-Puff Z-Pinch Plasma Column</title><title>arXiv.org</title><description>In this paper, we present the first direct experimental evidence supported by numerical modeling of a turbulent plasma column formed during a gas-puff z-pinch implosion generated by COBRA current. Utilizing an imaging refractometer, we show a significant decrease in spatial autocorrelation of the laser field and the appearance of a laser speckle pattern shortly before stagnation. The intensity distribution of the speckles measured during different shot campaigns while employing long and short COBRA pulses follows the speckle statistics satisfactorily. The imaging refractometer data is proportional to the integral over electron density gradients; hence, the measured phase randomization of the individual plane waves comprising the laser field implies random density distribution. To validate this, the Beam Propagation Method code simulates the laser beam propagation through different artificial density distributions with various average fluctuation scales and generates synthetic imaging refractometer data. The results reproduce similar trends in the experimental data, such as the increasing vertical width for the decreasing average spatial scale of the fluctuations and decreasing spatial correlation length of the laser field. Therefore, during the gas-puff z-pinch implosion process, it is likely that the plasma flow is almost always turbulent with the average spatial scale of the turbulent density fluctuations decreasing towards stagnation.</description><subject>Density distribution</subject><subject>Density gradients</subject><subject>Electron density</subject><subject>Gas puff Z pinch plasmas</subject><subject>Imaging</subject><subject>Implosions</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Numerical models</subject><subject>Plane waves</subject><subject>Randomization</subject><subject>Spatial data</subject><subject>Speckle patterns</subject><subject>Stagnation</subject><subject>Turbulent flow</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik8LgjAcQEcQJOV3-EHnwdy08iz9OXQQEYIu8rM2VHSrzQX16fPQB-j04L03IwEXIqK7mPMFCZ3rGGN8s-VJIgJSFKjvZmg_OLZGg1GAcEYnLVzwJZU1eoT6DWMjofS29r2cxBEdzb1ScKV5q28N5D26ASEzvR_0iswV9k6GPy7J-rAvsxN9WPP00o1VZ7zVU6pEJOI0ZTzm4r_rC4YHPsg</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Rososhek, A</creator><creator>Lavine, E S</creator><creator>Kusse, B R</creator><creator>Potter, W M</creator><creator>Hammer, D A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241127</creationdate><title>Randomization of a Laser Wavefront by the Turbulent Gas-Puff Z-Pinch Plasma Column</title><author>Rososhek, A ; Lavine, E S ; Kusse, B R ; Potter, W M ; Hammer, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31349902423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density distribution</topic><topic>Density gradients</topic><topic>Electron density</topic><topic>Gas puff Z pinch plasmas</topic><topic>Imaging</topic><topic>Implosions</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Numerical models</topic><topic>Plane waves</topic><topic>Randomization</topic><topic>Spatial data</topic><topic>Speckle patterns</topic><topic>Stagnation</topic><topic>Turbulent flow</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Rososhek, A</creatorcontrib><creatorcontrib>Lavine, E S</creatorcontrib><creatorcontrib>Kusse, B R</creatorcontrib><creatorcontrib>Potter, W M</creatorcontrib><creatorcontrib>Hammer, D A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rososhek, A</au><au>Lavine, E S</au><au>Kusse, B R</au><au>Potter, W M</au><au>Hammer, D A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Randomization of a Laser Wavefront by the Turbulent Gas-Puff Z-Pinch Plasma Column</atitle><jtitle>arXiv.org</jtitle><date>2024-11-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we present the first direct experimental evidence supported by numerical modeling of a turbulent plasma column formed during a gas-puff z-pinch implosion generated by COBRA current. Utilizing an imaging refractometer, we show a significant decrease in spatial autocorrelation of the laser field and the appearance of a laser speckle pattern shortly before stagnation. The intensity distribution of the speckles measured during different shot campaigns while employing long and short COBRA pulses follows the speckle statistics satisfactorily. The imaging refractometer data is proportional to the integral over electron density gradients; hence, the measured phase randomization of the individual plane waves comprising the laser field implies random density distribution. To validate this, the Beam Propagation Method code simulates the laser beam propagation through different artificial density distributions with various average fluctuation scales and generates synthetic imaging refractometer data. The results reproduce similar trends in the experimental data, such as the increasing vertical width for the decreasing average spatial scale of the fluctuations and decreasing spatial correlation length of the laser field. Therefore, during the gas-puff z-pinch implosion process, it is likely that the plasma flow is almost always turbulent with the average spatial scale of the turbulent density fluctuations decreasing towards stagnation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3134990242
source Free E- Journals
subjects Density distribution
Density gradients
Electron density
Gas puff Z pinch plasmas
Imaging
Implosions
Laser beams
Lasers
Numerical models
Plane waves
Randomization
Spatial data
Speckle patterns
Stagnation
Turbulent flow
Wave fronts
Wave propagation
title Randomization of a Laser Wavefront by the Turbulent Gas-Puff Z-Pinch Plasma Column
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Randomization%20of%20a%20Laser%20Wavefront%20by%20the%20Turbulent%20Gas-Puff%20Z-Pinch%20Plasma%20Column&rft.jtitle=arXiv.org&rft.au=Rososhek,%20A&rft.date=2024-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3134990242%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134990242&rft_id=info:pmid/&rfr_iscdi=true