Quantum Annealing based Feature Selection in Machine Learning
Feature selection is crucial for enhancing the accuracy and efficiency of machine learning (ML) models. This work investigates the utility of quantum annealing for the feature selection process in an ML-pipeline, used for maximizing the mutual information (MI) or conditional mutual information (CMI)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pranjic, Daniel Mummaneni, Bharadwaj Chowdary Tutschku, Christian |
description | Feature selection is crucial for enhancing the accuracy and efficiency of machine learning (ML) models. This work investigates the utility of quantum annealing for the feature selection process in an ML-pipeline, used for maximizing the mutual information (MI) or conditional mutual information (CMI) of the underlying feature space. Calculating the optimal set of features that maximize the MI or CMI is computationally intractable for large datasets on classical computers, even with approximative methods. This study employs a Mutual Information Quadratic Unconstrained Binary Optimization (MIQUBO) formulation, enabling its solution on a quantum annealer. We demonstrate the capability of this approach to identify the best feature combinations that maximize the MI or CMI. To showcase its real-world applicability, we solve the MIQUBO problem to forecast the prices of used excavators. Our results demonstrate that for datasets with a small MI concentration the MIQUBO approach can provide a significant improvement over MI-only based approaches, dependent on the dimension of the selected feature space. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3134989118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134989118</sourcerecordid><originalsourceid>FETCH-proquest_journals_31349891183</originalsourceid><addsrcrecordid>eNqNyj0KwkAQQOFFEAyaOwxYB7K7iSaFhYjBQgsxfRjjqBviRPfn_qbwAFaveN9EREprmRSZUjMRO9elaapWa5XnOhKbc0D24QVbZsLe8AOu6OgGFaEPluBCPbXeDAyG4YTt0zDBkdDyaBdiesfeUfzrXCyrfb07JG87fAI533RDsDyuRkudlUUpZaH_U19WPDel</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134989118</pqid></control><display><type>article</type><title>Quantum Annealing based Feature Selection in Machine Learning</title><source>Free E- Journals</source><creator>Pranjic, Daniel ; Mummaneni, Bharadwaj Chowdary ; Tutschku, Christian</creator><creatorcontrib>Pranjic, Daniel ; Mummaneni, Bharadwaj Chowdary ; Tutschku, Christian</creatorcontrib><description>Feature selection is crucial for enhancing the accuracy and efficiency of machine learning (ML) models. This work investigates the utility of quantum annealing for the feature selection process in an ML-pipeline, used for maximizing the mutual information (MI) or conditional mutual information (CMI) of the underlying feature space. Calculating the optimal set of features that maximize the MI or CMI is computationally intractable for large datasets on classical computers, even with approximative methods. This study employs a Mutual Information Quadratic Unconstrained Binary Optimization (MIQUBO) formulation, enabling its solution on a quantum annealer. We demonstrate the capability of this approach to identify the best feature combinations that maximize the MI or CMI. To showcase its real-world applicability, we solve the MIQUBO problem to forecast the prices of used excavators. Our results demonstrate that for datasets with a small MI concentration the MIQUBO approach can provide a significant improvement over MI-only based approaches, dependent on the dimension of the selected feature space.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Feature selection ; Machine learning ; Optimization</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pranjic, Daniel</creatorcontrib><creatorcontrib>Mummaneni, Bharadwaj Chowdary</creatorcontrib><creatorcontrib>Tutschku, Christian</creatorcontrib><title>Quantum Annealing based Feature Selection in Machine Learning</title><title>arXiv.org</title><description>Feature selection is crucial for enhancing the accuracy and efficiency of machine learning (ML) models. This work investigates the utility of quantum annealing for the feature selection process in an ML-pipeline, used for maximizing the mutual information (MI) or conditional mutual information (CMI) of the underlying feature space. Calculating the optimal set of features that maximize the MI or CMI is computationally intractable for large datasets on classical computers, even with approximative methods. This study employs a Mutual Information Quadratic Unconstrained Binary Optimization (MIQUBO) formulation, enabling its solution on a quantum annealer. We demonstrate the capability of this approach to identify the best feature combinations that maximize the MI or CMI. To showcase its real-world applicability, we solve the MIQUBO problem to forecast the prices of used excavators. Our results demonstrate that for datasets with a small MI concentration the MIQUBO approach can provide a significant improvement over MI-only based approaches, dependent on the dimension of the selected feature space.</description><subject>Datasets</subject><subject>Feature selection</subject><subject>Machine learning</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyj0KwkAQQOFFEAyaOwxYB7K7iSaFhYjBQgsxfRjjqBviRPfn_qbwAFaveN9EREprmRSZUjMRO9elaapWa5XnOhKbc0D24QVbZsLe8AOu6OgGFaEPluBCPbXeDAyG4YTt0zDBkdDyaBdiesfeUfzrXCyrfb07JG87fAI533RDsDyuRkudlUUpZaH_U19WPDel</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Pranjic, Daniel</creator><creator>Mummaneni, Bharadwaj Chowdary</creator><creator>Tutschku, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241129</creationdate><title>Quantum Annealing based Feature Selection in Machine Learning</title><author>Pranjic, Daniel ; Mummaneni, Bharadwaj Chowdary ; Tutschku, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31349891183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Feature selection</topic><topic>Machine learning</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Pranjic, Daniel</creatorcontrib><creatorcontrib>Mummaneni, Bharadwaj Chowdary</creatorcontrib><creatorcontrib>Tutschku, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pranjic, Daniel</au><au>Mummaneni, Bharadwaj Chowdary</au><au>Tutschku, Christian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Annealing based Feature Selection in Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-11-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Feature selection is crucial for enhancing the accuracy and efficiency of machine learning (ML) models. This work investigates the utility of quantum annealing for the feature selection process in an ML-pipeline, used for maximizing the mutual information (MI) or conditional mutual information (CMI) of the underlying feature space. Calculating the optimal set of features that maximize the MI or CMI is computationally intractable for large datasets on classical computers, even with approximative methods. This study employs a Mutual Information Quadratic Unconstrained Binary Optimization (MIQUBO) formulation, enabling its solution on a quantum annealer. We demonstrate the capability of this approach to identify the best feature combinations that maximize the MI or CMI. To showcase its real-world applicability, we solve the MIQUBO problem to forecast the prices of used excavators. Our results demonstrate that for datasets with a small MI concentration the MIQUBO approach can provide a significant improvement over MI-only based approaches, dependent on the dimension of the selected feature space.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3134989118 |
source | Free E- Journals |
subjects | Datasets Feature selection Machine learning Optimization |
title | Quantum Annealing based Feature Selection in Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Annealing%20based%20Feature%20Selection%20in%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Pranjic,%20Daniel&rft.date=2024-11-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3134989118%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134989118&rft_id=info:pmid/&rfr_iscdi=true |