Composite Pressure Vessel Failure Simulation Considering Spatial Variability
Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2024-12, Vol.62 (12), p.4834-4845 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4845 |
---|---|
container_issue | 12 |
container_start_page | 4834 |
container_title | AIAA journal |
container_volume | 62 |
creator | Van Bavel, Ben Vandepitte, Dirk Moens, David |
description | Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy. |
doi_str_mv | 10.2514/1.J064163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_3134902036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134902036</sourcerecordid><originalsourceid>FETCH-LOGICAL-a178t-928b8bc67cf7e778e92938cfec6e262358cce18a689db8dd284eb07260f24b63</originalsourceid><addsrcrecordid>eNplkE1LxDAYhIMoWFcP_oOCIHjomo82SY9SXD8oKOyyeAtp-laydJuatIf997bsggdPwwwPMzAI3RK8pBlJH8nyHfOUcHaGIpIxljCZfZ2jCGNMEpJm9BJdhbCbHBWSRKgs3L53wQ4Qf3oIYfQQbyeFNl5p2852bfdjqwfrurhwXbA1eNt9x-t-ynQbb7W3urKtHQ7X6KLRbYCbky7QZvW8KV6T8uPlrXgqE02EHJKcykpWhgvTCBBCQk5zJk0DhgPllGXSGCBSc5nXlaxrKlOosKAcNzStOFugu2Nt793PCGFQOzf6blpUjLA0xxSzmXo4Usa7EDw0qvd2r_1BEazmrxRRp68m9v7Iaqv1X9t_8Bc6pWeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134902036</pqid></control><display><type>article</type><title>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</title><source>Alma/SFX Local Collection</source><creator>Van Bavel, Ben ; Vandepitte, Dirk ; Moens, David</creator><creatorcontrib>Van Bavel, Ben ; Vandepitte, Dirk ; Moens, David</creatorcontrib><description>Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J064163</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; College professors ; Discount coupons ; Fiber composites ; Fiber reinforced polymers ; Fiber strength ; Homogenization ; Material properties ; Mechanical engineering ; Misalignment ; Predictions ; Pressure vessels ; Propagation ; Random variables ; Shear strength ; Simulation ; Structural reliability</subject><ispartof>AIAA journal, 2024-12, Vol.62 (12), p.4834-4845</ispartof><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a178t-928b8bc67cf7e778e92938cfec6e262358cce18a689db8dd284eb07260f24b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Van Bavel, Ben</creatorcontrib><creatorcontrib>Vandepitte, Dirk</creatorcontrib><creatorcontrib>Moens, David</creatorcontrib><title>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</title><title>AIAA journal</title><description>Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>College professors</subject><subject>Discount coupons</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber strength</subject><subject>Homogenization</subject><subject>Material properties</subject><subject>Mechanical engineering</subject><subject>Misalignment</subject><subject>Predictions</subject><subject>Pressure vessels</subject><subject>Propagation</subject><subject>Random variables</subject><subject>Shear strength</subject><subject>Simulation</subject><subject>Structural reliability</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkE1LxDAYhIMoWFcP_oOCIHjomo82SY9SXD8oKOyyeAtp-laydJuatIf997bsggdPwwwPMzAI3RK8pBlJH8nyHfOUcHaGIpIxljCZfZ2jCGNMEpJm9BJdhbCbHBWSRKgs3L53wQ4Qf3oIYfQQbyeFNl5p2852bfdjqwfrurhwXbA1eNt9x-t-ynQbb7W3urKtHQ7X6KLRbYCbky7QZvW8KV6T8uPlrXgqE02EHJKcykpWhgvTCBBCQk5zJk0DhgPllGXSGCBSc5nXlaxrKlOosKAcNzStOFugu2Nt793PCGFQOzf6blpUjLA0xxSzmXo4Usa7EDw0qvd2r_1BEazmrxRRp68m9v7Iaqv1X9t_8Bc6pWeA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Van Bavel, Ben</creator><creator>Vandepitte, Dirk</creator><creator>Moens, David</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202412</creationdate><title>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</title><author>Van Bavel, Ben ; Vandepitte, Dirk ; Moens, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a178t-928b8bc67cf7e778e92938cfec6e262358cce18a689db8dd284eb07260f24b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>College professors</topic><topic>Discount coupons</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber strength</topic><topic>Homogenization</topic><topic>Material properties</topic><topic>Mechanical engineering</topic><topic>Misalignment</topic><topic>Predictions</topic><topic>Pressure vessels</topic><topic>Propagation</topic><topic>Random variables</topic><topic>Shear strength</topic><topic>Simulation</topic><topic>Structural reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Bavel, Ben</creatorcontrib><creatorcontrib>Vandepitte, Dirk</creatorcontrib><creatorcontrib>Moens, David</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Bavel, Ben</au><au>Vandepitte, Dirk</au><au>Moens, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</atitle><jtitle>AIAA journal</jtitle><date>2024-12</date><risdate>2024</risdate><volume>62</volume><issue>12</issue><spage>4834</spage><epage>4845</epage><pages>4834-4845</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J064163</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2024-12, Vol.62 (12), p.4834-4845 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_3134902036 |
source | Alma/SFX Local Collection |
subjects | Carbon fiber reinforced plastics Carbon fiber reinforcement College professors Discount coupons Fiber composites Fiber reinforced polymers Fiber strength Homogenization Material properties Mechanical engineering Misalignment Predictions Pressure vessels Propagation Random variables Shear strength Simulation Structural reliability |
title | Composite Pressure Vessel Failure Simulation Considering Spatial Variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Pressure%20Vessel%20Failure%20Simulation%20Considering%20Spatial%20Variability&rft.jtitle=AIAA%20journal&rft.au=Van%20Bavel,%20Ben&rft.date=2024-12&rft.volume=62&rft.issue=12&rft.spage=4834&rft.epage=4845&rft.pages=4834-4845&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J064163&rft_dat=%3Cproquest_aiaa_%3E3134902036%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134902036&rft_id=info:pmid/&rfr_iscdi=true |