Composite Pressure Vessel Failure Simulation Considering Spatial Variability

Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2024-12, Vol.62 (12), p.4834-4845
Hauptverfasser: Van Bavel, Ben, Vandepitte, Dirk, Moens, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4845
container_issue 12
container_start_page 4834
container_title AIAA journal
container_volume 62
creator Van Bavel, Ben
Vandepitte, Dirk
Moens, David
description Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.
doi_str_mv 10.2514/1.J064163
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_3134902036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134902036</sourcerecordid><originalsourceid>FETCH-LOGICAL-a178t-928b8bc67cf7e778e92938cfec6e262358cce18a689db8dd284eb07260f24b63</originalsourceid><addsrcrecordid>eNplkE1LxDAYhIMoWFcP_oOCIHjomo82SY9SXD8oKOyyeAtp-laydJuatIf997bsggdPwwwPMzAI3RK8pBlJH8nyHfOUcHaGIpIxljCZfZ2jCGNMEpJm9BJdhbCbHBWSRKgs3L53wQ4Qf3oIYfQQbyeFNl5p2852bfdjqwfrurhwXbA1eNt9x-t-ynQbb7W3urKtHQ7X6KLRbYCbky7QZvW8KV6T8uPlrXgqE02EHJKcykpWhgvTCBBCQk5zJk0DhgPllGXSGCBSc5nXlaxrKlOosKAcNzStOFugu2Nt793PCGFQOzf6blpUjLA0xxSzmXo4Usa7EDw0qvd2r_1BEazmrxRRp68m9v7Iaqv1X9t_8Bc6pWeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134902036</pqid></control><display><type>article</type><title>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</title><source>Alma/SFX Local Collection</source><creator>Van Bavel, Ben ; Vandepitte, Dirk ; Moens, David</creator><creatorcontrib>Van Bavel, Ben ; Vandepitte, Dirk ; Moens, David</creatorcontrib><description>Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J064163</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; College professors ; Discount coupons ; Fiber composites ; Fiber reinforced polymers ; Fiber strength ; Homogenization ; Material properties ; Mechanical engineering ; Misalignment ; Predictions ; Pressure vessels ; Propagation ; Random variables ; Shear strength ; Simulation ; Structural reliability</subject><ispartof>AIAA journal, 2024-12, Vol.62 (12), p.4834-4845</ispartof><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a178t-928b8bc67cf7e778e92938cfec6e262358cce18a689db8dd284eb07260f24b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Van Bavel, Ben</creatorcontrib><creatorcontrib>Vandepitte, Dirk</creatorcontrib><creatorcontrib>Moens, David</creatorcontrib><title>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</title><title>AIAA journal</title><description>Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.</description><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>College professors</subject><subject>Discount coupons</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber strength</subject><subject>Homogenization</subject><subject>Material properties</subject><subject>Mechanical engineering</subject><subject>Misalignment</subject><subject>Predictions</subject><subject>Pressure vessels</subject><subject>Propagation</subject><subject>Random variables</subject><subject>Shear strength</subject><subject>Simulation</subject><subject>Structural reliability</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkE1LxDAYhIMoWFcP_oOCIHjomo82SY9SXD8oKOyyeAtp-laydJuatIf997bsggdPwwwPMzAI3RK8pBlJH8nyHfOUcHaGIpIxljCZfZ2jCGNMEpJm9BJdhbCbHBWSRKgs3L53wQ4Qf3oIYfQQbyeFNl5p2852bfdjqwfrurhwXbA1eNt9x-t-ynQbb7W3urKtHQ7X6KLRbYCbky7QZvW8KV6T8uPlrXgqE02EHJKcykpWhgvTCBBCQk5zJk0DhgPllGXSGCBSc5nXlaxrKlOosKAcNzStOFugu2Nt793PCGFQOzf6blpUjLA0xxSzmXo4Usa7EDw0qvd2r_1BEazmrxRRp68m9v7Iaqv1X9t_8Bc6pWeA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Van Bavel, Ben</creator><creator>Vandepitte, Dirk</creator><creator>Moens, David</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202412</creationdate><title>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</title><author>Van Bavel, Ben ; Vandepitte, Dirk ; Moens, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a178t-928b8bc67cf7e778e92938cfec6e262358cce18a689db8dd284eb07260f24b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>College professors</topic><topic>Discount coupons</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber strength</topic><topic>Homogenization</topic><topic>Material properties</topic><topic>Mechanical engineering</topic><topic>Misalignment</topic><topic>Predictions</topic><topic>Pressure vessels</topic><topic>Propagation</topic><topic>Random variables</topic><topic>Shear strength</topic><topic>Simulation</topic><topic>Structural reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Bavel, Ben</creatorcontrib><creatorcontrib>Vandepitte, Dirk</creatorcontrib><creatorcontrib>Moens, David</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Bavel, Ben</au><au>Vandepitte, Dirk</au><au>Moens, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Pressure Vessel Failure Simulation Considering Spatial Variability</atitle><jtitle>AIAA journal</jtitle><date>2024-12</date><risdate>2024</risdate><volume>62</volume><issue>12</issue><spage>4834</spage><epage>4845</epage><pages>4834-4845</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Carbon fiber-reinforced polymers offer lightweight solutions for demanding applications, but material imperfections affect structural reliability. In this study, an efficient uncertainty propagation framework is applied to predict composite behavior. The framework accounts for spatial variability of fiber misalignment, uneven fiber distribution, and single-fiber strength. Spatial variability is represented at both the micro- and mesoscale. Macroscale simulations incorporate this spatial variability indirectly using homogenized material properties. The framework was applied to composite pressure vessels, whose stochastic burst pressure was predicted. The predictions were validated by experimental measurements. These measurements show that the actual burst pressure was underpredicted by an average of 5.8%. Several hypotheses were investigated to explain this discrepancy.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J064163</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2024-12, Vol.62 (12), p.4834-4845
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_3134902036
source Alma/SFX Local Collection
subjects Carbon fiber reinforced plastics
Carbon fiber reinforcement
College professors
Discount coupons
Fiber composites
Fiber reinforced polymers
Fiber strength
Homogenization
Material properties
Mechanical engineering
Misalignment
Predictions
Pressure vessels
Propagation
Random variables
Shear strength
Simulation
Structural reliability
title Composite Pressure Vessel Failure Simulation Considering Spatial Variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Pressure%20Vessel%20Failure%20Simulation%20Considering%20Spatial%20Variability&rft.jtitle=AIAA%20journal&rft.au=Van%20Bavel,%20Ben&rft.date=2024-12&rft.volume=62&rft.issue=12&rft.spage=4834&rft.epage=4845&rft.pages=4834-4845&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J064163&rft_dat=%3Cproquest_aiaa_%3E3134902036%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134902036&rft_id=info:pmid/&rfr_iscdi=true