Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions
This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperp...
Gespeichert in:
Veröffentlicht in: | Canadian journal of forest research 2024-12, Vol.54 (12), p.1500-1518 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1518 |
---|---|
container_issue | 12 |
container_start_page | 1500 |
container_title | Canadian journal of forest research |
container_volume | 54 |
creator | Ercanlı, İlker |
description | This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications. |
doi_str_mv | 10.1139/cjfr-2024-0068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134460739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134460739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-3d290eb8b8a5223e52836e6f44515c046f11e88287dc08d51be286d8bedebc693</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKtb1wHXU1-SSSZdSv2Eghtdh0zypqZMJ2OSFvz3Oq2ru7iHe-EQcstgwZhY3rttlyoOvK4AlD4jM8ZBVwpEc05mALWsJKjmklzlvAUAoQTMSHxEHGmPNg1h2FDbb2IK5WuXaRcTtd4nzHlq4gFTF0o5UoOnbYh93ARne5rQ9iHvaBhoSYi02BHTETrEfr9DOib0wZUQh3xNLjrbZ7z5zzn5fH76WL1W6_eXt9XDunJM8lIJz5eArW61lZwLlFwLhaqra8mkg1p1jKHWXDfegfaStci18rpFj61TSzEnd6fdMcXvPeZitnGfhr9LI5ioawWNmKjFiXIp5pywM2MKO5t-DAMzSTWTVDNJNZNU8Qv0OmyN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134460739</pqid></control><display><type>article</type><title>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</title><source>Alma/SFX Local Collection</source><creator>Ercanlı, İlker</creator><creatorcontrib>Ercanlı, İlker</creatorcontrib><description>This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.</description><identifier>ISSN: 0045-5067</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/cjfr-2024-0068</identifier><language>eng</language><publisher>Ottawa: Canadian Science Publishing NRC Research Press</publisher><subject>Algorithms ; Artificial intelligence ; Bark ; Biological effects ; Biometrics ; Datasets ; Deep learning ; Learning algorithms ; Machine learning ; Momentum ; Optimization techniques ; Predictions ; Realism ; Regularization ; Statistics ; Tapering</subject><ispartof>Canadian journal of forest research, 2024-12, Vol.54 (12), p.1500-1518</ispartof><rights>2024 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c152t-3d290eb8b8a5223e52836e6f44515c046f11e88287dc08d51be286d8bedebc693</cites><orcidid>0000-0003-4250-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ercanlı, İlker</creatorcontrib><title>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</title><title>Canadian journal of forest research</title><description>This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bark</subject><subject>Biological effects</subject><subject>Biometrics</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Momentum</subject><subject>Optimization techniques</subject><subject>Predictions</subject><subject>Realism</subject><subject>Regularization</subject><subject>Statistics</subject><subject>Tapering</subject><issn>0045-5067</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKtb1wHXU1-SSSZdSv2Eghtdh0zypqZMJ2OSFvz3Oq2ru7iHe-EQcstgwZhY3rttlyoOvK4AlD4jM8ZBVwpEc05mALWsJKjmklzlvAUAoQTMSHxEHGmPNg1h2FDbb2IK5WuXaRcTtd4nzHlq4gFTF0o5UoOnbYh93ARne5rQ9iHvaBhoSYi02BHTETrEfr9DOib0wZUQh3xNLjrbZ7z5zzn5fH76WL1W6_eXt9XDunJM8lIJz5eArW61lZwLlFwLhaqra8mkg1p1jKHWXDfegfaStci18rpFj61TSzEnd6fdMcXvPeZitnGfhr9LI5ioawWNmKjFiXIp5pywM2MKO5t-DAMzSTWTVDNJNZNU8Qv0OmyN</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ercanlı, İlker</creator><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0003-4250-7371</orcidid></search><sort><creationdate>20241201</creationdate><title>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</title><author>Ercanlı, İlker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-3d290eb8b8a5223e52836e6f44515c046f11e88287dc08d51be286d8bedebc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bark</topic><topic>Biological effects</topic><topic>Biometrics</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Momentum</topic><topic>Optimization techniques</topic><topic>Predictions</topic><topic>Realism</topic><topic>Regularization</topic><topic>Statistics</topic><topic>Tapering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercanlı, İlker</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercanlı, İlker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</atitle><jtitle>Canadian journal of forest research</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>54</volume><issue>12</issue><spage>1500</spage><epage>1518</epage><pages>1500-1518</pages><issn>0045-5067</issn><eissn>1208-6037</eissn><abstract>This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.</abstract><cop>Ottawa</cop><pub>Canadian Science Publishing NRC Research Press</pub><doi>10.1139/cjfr-2024-0068</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4250-7371</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-5067 |
ispartof | Canadian journal of forest research, 2024-12, Vol.54 (12), p.1500-1518 |
issn | 0045-5067 1208-6037 |
language | eng |
recordid | cdi_proquest_journals_3134460739 |
source | Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Bark Biological effects Biometrics Datasets Deep learning Learning algorithms Machine learning Momentum Optimization techniques Predictions Realism Regularization Statistics Tapering |
title | Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20algorithms%20for%20addressing%20overfitting%20and%20biological%20realism%20in%20tree%20taper%20and%20volume%20predictions&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Ercanl%C4%B1,%20%C4%B0lker&rft.date=2024-12-01&rft.volume=54&rft.issue=12&rft.spage=1500&rft.epage=1518&rft.pages=1500-1518&rft.issn=0045-5067&rft.eissn=1208-6037&rft_id=info:doi/10.1139/cjfr-2024-0068&rft_dat=%3Cproquest_cross%3E3134460739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134460739&rft_id=info:pmid/&rfr_iscdi=true |