Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions

This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2024-12, Vol.54 (12), p.1500-1518
1. Verfasser: Ercanlı, İlker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1518
container_issue 12
container_start_page 1500
container_title Canadian journal of forest research
container_volume 54
creator Ercanlı, İlker
description This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.
doi_str_mv 10.1139/cjfr-2024-0068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134460739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134460739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-3d290eb8b8a5223e52836e6f44515c046f11e88287dc08d51be286d8bedebc693</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKtb1wHXU1-SSSZdSv2Eghtdh0zypqZMJ2OSFvz3Oq2ru7iHe-EQcstgwZhY3rttlyoOvK4AlD4jM8ZBVwpEc05mALWsJKjmklzlvAUAoQTMSHxEHGmPNg1h2FDbb2IK5WuXaRcTtd4nzHlq4gFTF0o5UoOnbYh93ARne5rQ9iHvaBhoSYi02BHTETrEfr9DOib0wZUQh3xNLjrbZ7z5zzn5fH76WL1W6_eXt9XDunJM8lIJz5eArW61lZwLlFwLhaqra8mkg1p1jKHWXDfegfaStci18rpFj61TSzEnd6fdMcXvPeZitnGfhr9LI5ioawWNmKjFiXIp5pywM2MKO5t-DAMzSTWTVDNJNZNU8Qv0OmyN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134460739</pqid></control><display><type>article</type><title>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</title><source>Alma/SFX Local Collection</source><creator>Ercanlı, İlker</creator><creatorcontrib>Ercanlı, İlker</creatorcontrib><description>This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.</description><identifier>ISSN: 0045-5067</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/cjfr-2024-0068</identifier><language>eng</language><publisher>Ottawa: Canadian Science Publishing NRC Research Press</publisher><subject>Algorithms ; Artificial intelligence ; Bark ; Biological effects ; Biometrics ; Datasets ; Deep learning ; Learning algorithms ; Machine learning ; Momentum ; Optimization techniques ; Predictions ; Realism ; Regularization ; Statistics ; Tapering</subject><ispartof>Canadian journal of forest research, 2024-12, Vol.54 (12), p.1500-1518</ispartof><rights>2024 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c152t-3d290eb8b8a5223e52836e6f44515c046f11e88287dc08d51be286d8bedebc693</cites><orcidid>0000-0003-4250-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ercanlı, İlker</creatorcontrib><title>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</title><title>Canadian journal of forest research</title><description>This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bark</subject><subject>Biological effects</subject><subject>Biometrics</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Momentum</subject><subject>Optimization techniques</subject><subject>Predictions</subject><subject>Realism</subject><subject>Regularization</subject><subject>Statistics</subject><subject>Tapering</subject><issn>0045-5067</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKtb1wHXU1-SSSZdSv2Eghtdh0zypqZMJ2OSFvz3Oq2ru7iHe-EQcstgwZhY3rttlyoOvK4AlD4jM8ZBVwpEc05mALWsJKjmklzlvAUAoQTMSHxEHGmPNg1h2FDbb2IK5WuXaRcTtd4nzHlq4gFTF0o5UoOnbYh93ARne5rQ9iHvaBhoSYi02BHTETrEfr9DOib0wZUQh3xNLjrbZ7z5zzn5fH76WL1W6_eXt9XDunJM8lIJz5eArW61lZwLlFwLhaqra8mkg1p1jKHWXDfegfaStci18rpFj61TSzEnd6fdMcXvPeZitnGfhr9LI5ioawWNmKjFiXIp5pywM2MKO5t-DAMzSTWTVDNJNZNU8Qv0OmyN</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ercanlı, İlker</creator><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0003-4250-7371</orcidid></search><sort><creationdate>20241201</creationdate><title>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</title><author>Ercanlı, İlker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-3d290eb8b8a5223e52836e6f44515c046f11e88287dc08d51be286d8bedebc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bark</topic><topic>Biological effects</topic><topic>Biometrics</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Momentum</topic><topic>Optimization techniques</topic><topic>Predictions</topic><topic>Realism</topic><topic>Regularization</topic><topic>Statistics</topic><topic>Tapering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercanlı, İlker</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercanlı, İlker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions</atitle><jtitle>Canadian journal of forest research</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>54</volume><issue>12</issue><spage>1500</spage><epage>1518</epage><pages>1500-1518</pages><issn>0045-5067</issn><eissn>1208-6037</eissn><abstract>This study addresses the challenges of overfitting and maintaining biological realism in deep learning algorithms (DLAs), for predicting individual tree taper using stem diameters outside bark (DOB) and total tree volume (TTV). To this end, DLAs were trained using two different approaches: a “hyperparameter-optimized DLA”, which customizes specific hyperparameters such as learning rate and momentum rate, and a “regularization-optimized DLA”, which incorporates optimization techniques like early stopping with root mean square error, L1 and L2 regularization, and dropout. Although obtaining the deterioration in predictive capabilities statistics from the taring dataset to the validation dataset by standard DLA with adaptive learning processes without customizing the hyperparameters and regularization parameters, the hyperparameter-optimized DLA with a momentum of 0.8, and a 7 # hidden layer for the TTV and regularization-optimized DLA with a dropout ratio of 0.000001, a 3 # hidden layer for the DOB demonstrated comparable predictive capabilities statistics across both training and validation datasets with generating biologically plausible predictions. Our results support that these hyperparameter-optimized and regularization-optimized DLAs, by improving the “black-box” nature of artificial intelligence, offer significant potential for enhanced interpretability and performance by improving the problem of overfitting and the violations biological realism in forest biometrics applications.</abstract><cop>Ottawa</cop><pub>Canadian Science Publishing NRC Research Press</pub><doi>10.1139/cjfr-2024-0068</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4250-7371</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-5067
ispartof Canadian journal of forest research, 2024-12, Vol.54 (12), p.1500-1518
issn 0045-5067
1208-6037
language eng
recordid cdi_proquest_journals_3134460739
source Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Bark
Biological effects
Biometrics
Datasets
Deep learning
Learning algorithms
Machine learning
Momentum
Optimization techniques
Predictions
Realism
Regularization
Statistics
Tapering
title Deep learning algorithms for addressing overfitting and biological realism in tree taper and volume predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20algorithms%20for%20addressing%20overfitting%20and%20biological%20realism%20in%20tree%20taper%20and%20volume%20predictions&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Ercanl%C4%B1,%20%C4%B0lker&rft.date=2024-12-01&rft.volume=54&rft.issue=12&rft.spage=1500&rft.epage=1518&rft.pages=1500-1518&rft.issn=0045-5067&rft.eissn=1208-6037&rft_id=info:doi/10.1139/cjfr-2024-0068&rft_dat=%3Cproquest_cross%3E3134460739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134460739&rft_id=info:pmid/&rfr_iscdi=true