A family of symmetric graphs in relation to 2-point-transitive linear spaces

A graph Γ is G -symmetric if it admits G as a group of automorphisms acting transitively on the set of arcs of Γ , where an arc is an ordered pair of adjacent vertices. Let Γ be a G -symmetric graph such that its vertex set admits a nontrivial G -invariant partition B , and let D ( Γ , B ) be the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2025-02, Vol.61 (1), Article 7
Hauptverfasser: Fang, Teng, Zhou, Sanming, Zhou, Shenglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of algebraic combinatorics
container_volume 61
creator Fang, Teng
Zhou, Sanming
Zhou, Shenglin
description A graph Γ is G -symmetric if it admits G as a group of automorphisms acting transitively on the set of arcs of Γ , where an arc is an ordered pair of adjacent vertices. Let Γ be a G -symmetric graph such that its vertex set admits a nontrivial G -invariant partition B , and let D ( Γ , B ) be the incidence structure with point set B and blocks { B } ∪ Γ B ( α ) , for B ∈ B and α ∈ B , where Γ B ( α ) is the set of blocks of B containing at least one neighbor of α in Γ . In this paper, we classify all G -symmetric graphs Γ such that Γ B ( α ) ≠ Γ B ( β ) for distinct α , β ∈ B , the quotient graph of Γ with respect to B is a complete graph, and D ( Γ , B ) is isomorphic to the complement of a ( G , 2)-point-transitive linear space.
doi_str_mv 10.1007/s10801-024-01368-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134326175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134326175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7ffc9401ad40570d6c23745771534c0d9f703c364d90a1cad999f89bf80f51c43</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXAdfTeZDKZLEvxBQU3ug4xk9SUeZlEof_e0QruXN3NOd-FQ8glwjUCqJuM0AAy4BUDFHXD8IgsUCrONGp-TBaguWS60fqUnOW8AwDdoFyQzYoG28duT8dA877vfUnR0W2y01umcaDJd7bEcaBlpJxNYxwKK8kOOZb46WkXB28TzZN1Pp-Tk2C77C9-75K83N0-rx_Y5un-cb3aMMcBClMhOF0B2rYCqaCtHReqkkqhFJWDVgcFwom6ajVYdLbVWodGv4YGgkRXiSW5OuxOaXz_8LmY3fiRhvmlESgqwWtUcqb4gXJpzDn5YKYUe5v2BsF8VzOHamauZn6qGZwlcZDyDA9bn_6m_7G-AExkbp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134326175</pqid></control><display><type>article</type><title>A family of symmetric graphs in relation to 2-point-transitive linear spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fang, Teng ; Zhou, Sanming ; Zhou, Shenglin</creator><creatorcontrib>Fang, Teng ; Zhou, Sanming ; Zhou, Shenglin</creatorcontrib><description>A graph Γ is G -symmetric if it admits G as a group of automorphisms acting transitively on the set of arcs of Γ , where an arc is an ordered pair of adjacent vertices. Let Γ be a G -symmetric graph such that its vertex set admits a nontrivial G -invariant partition B , and let D ( Γ , B ) be the incidence structure with point set B and blocks { B } ∪ Γ B ( α ) , for B ∈ B and α ∈ B , where Γ B ( α ) is the set of blocks of B containing at least one neighbor of α in Γ . In this paper, we classify all G -symmetric graphs Γ such that Γ B ( α ) ≠ Γ B ( β ) for distinct α , β ∈ B , the quotient graph of Γ with respect to B is a complete graph, and D ( Γ , B ) is isomorphic to the complement of a ( G , 2)-point-transitive linear space.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-024-01368-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Automorphisms ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Graph theory ; Graphs ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Vector spaces ; Vertex sets</subject><ispartof>Journal of algebraic combinatorics, 2025-02, Vol.61 (1), Article 7</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7ffc9401ad40570d6c23745771534c0d9f703c364d90a1cad999f89bf80f51c43</cites><orcidid>0000-0001-9854-6076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-024-01368-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-024-01368-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Fang, Teng</creatorcontrib><creatorcontrib>Zhou, Sanming</creatorcontrib><creatorcontrib>Zhou, Shenglin</creatorcontrib><title>A family of symmetric graphs in relation to 2-point-transitive linear spaces</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>A graph Γ is G -symmetric if it admits G as a group of automorphisms acting transitively on the set of arcs of Γ , where an arc is an ordered pair of adjacent vertices. Let Γ be a G -symmetric graph such that its vertex set admits a nontrivial G -invariant partition B , and let D ( Γ , B ) be the incidence structure with point set B and blocks { B } ∪ Γ B ( α ) , for B ∈ B and α ∈ B , where Γ B ( α ) is the set of blocks of B containing at least one neighbor of α in Γ . In this paper, we classify all G -symmetric graphs Γ such that Γ B ( α ) ≠ Γ B ( β ) for distinct α , β ∈ B , the quotient graph of Γ with respect to B is a complete graph, and D ( Γ , B ) is isomorphic to the complement of a ( G , 2)-point-transitive linear space.</description><subject>Apexes</subject><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Vector spaces</subject><subject>Vertex sets</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKt_wFXAdfTeZDKZLEvxBQU3ug4xk9SUeZlEof_e0QruXN3NOd-FQ8glwjUCqJuM0AAy4BUDFHXD8IgsUCrONGp-TBaguWS60fqUnOW8AwDdoFyQzYoG28duT8dA877vfUnR0W2y01umcaDJd7bEcaBlpJxNYxwKK8kOOZb46WkXB28TzZN1Pp-Tk2C77C9-75K83N0-rx_Y5un-cb3aMMcBClMhOF0B2rYCqaCtHReqkkqhFJWDVgcFwom6ajVYdLbVWodGv4YGgkRXiSW5OuxOaXz_8LmY3fiRhvmlESgqwWtUcqb4gXJpzDn5YKYUe5v2BsF8VzOHamauZn6qGZwlcZDyDA9bn_6m_7G-AExkbp8</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Fang, Teng</creator><creator>Zhou, Sanming</creator><creator>Zhou, Shenglin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9854-6076</orcidid></search><sort><creationdate>20250201</creationdate><title>A family of symmetric graphs in relation to 2-point-transitive linear spaces</title><author>Fang, Teng ; Zhou, Sanming ; Zhou, Shenglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7ffc9401ad40570d6c23745771534c0d9f703c364d90a1cad999f89bf80f51c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Apexes</topic><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Vector spaces</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Teng</creatorcontrib><creatorcontrib>Zhou, Sanming</creatorcontrib><creatorcontrib>Zhou, Shenglin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Teng</au><au>Zhou, Sanming</au><au>Zhou, Shenglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of symmetric graphs in relation to 2-point-transitive linear spaces</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>61</volume><issue>1</issue><artnum>7</artnum><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>A graph Γ is G -symmetric if it admits G as a group of automorphisms acting transitively on the set of arcs of Γ , where an arc is an ordered pair of adjacent vertices. Let Γ be a G -symmetric graph such that its vertex set admits a nontrivial G -invariant partition B , and let D ( Γ , B ) be the incidence structure with point set B and blocks { B } ∪ Γ B ( α ) , for B ∈ B and α ∈ B , where Γ B ( α ) is the set of blocks of B containing at least one neighbor of α in Γ . In this paper, we classify all G -symmetric graphs Γ such that Γ B ( α ) ≠ Γ B ( β ) for distinct α , β ∈ B , the quotient graph of Γ with respect to B is a complete graph, and D ( Γ , B ) is isomorphic to the complement of a ( G , 2)-point-transitive linear space.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-024-01368-1</doi><orcidid>https://orcid.org/0000-0001-9854-6076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2025-02, Vol.61 (1), Article 7
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_3134326175
source SpringerLink Journals - AutoHoldings
subjects Apexes
Automorphisms
Combinatorics
Computer Science
Convex and Discrete Geometry
Graph theory
Graphs
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Vector spaces
Vertex sets
title A family of symmetric graphs in relation to 2-point-transitive linear spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20symmetric%20graphs%20in%20relation%20to%202-point-transitive%20linear%20spaces&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Fang,%20Teng&rft.date=2025-02-01&rft.volume=61&rft.issue=1&rft.artnum=7&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-024-01368-1&rft_dat=%3Cproquest_cross%3E3134326175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134326175&rft_id=info:pmid/&rfr_iscdi=true