Interdiffusion cross-high-entropy alloys, nano-multilayer foils, and Al interface: An atomistic simulation

Molecular dynamics simulation is used to investigate the interdiffusion across the interfaces of high-entropy alloys (HEAs), reactive nano-multilayer foils (NMFs), NMFs, and crystalline Al. This study reveals highly asymmetric interdiffusivity within adjacent reactive NMFs and HEAs, exhibiting stron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-12, Vol.59 (46), p.21348-21361
Hauptverfasser: Wu, Baolei, Yu, Weiyuan, Zhu, Wenqi, Li, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21361
container_issue 46
container_start_page 21348
container_title Journal of materials science
container_volume 59
creator Wu, Baolei
Yu, Weiyuan
Zhu, Wenqi
Li, Yang
description Molecular dynamics simulation is used to investigate the interdiffusion across the interfaces of high-entropy alloys (HEAs), reactive nano-multilayer foils (NMFs), NMFs, and crystalline Al. This study reveals highly asymmetric interdiffusivity within adjacent reactive NMFs and HEAs, exhibiting strong temperature dependency. Abnormal interdiffusion is observed in the diffusion region, which originates from the original solid/liquid interface. The mass transport phenomenon in this polyphase system involves an intricate interaction between coinstantaneous structure transformations: from the nano-multilayer structure to the solid-solution phase to a liquid–crystal Al phase. These transformations are driven by understated shifts in local bonding type with other atoms, wetting and spreading behaviors, and discrepancies in the inherent diffusivity of alloy components. The inherent complexity emerges as the heterostructure approaches equilibrium. This study discusses the important applications of interdiffusion in HEAs, NMFs, and crystalline Al fillers during the brazing process. This study sheds light on the interdiffusion in these systems and discusses its practical implications.
doi_str_mv 10.1007/s10853-024-10460-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134224304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134224304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e34866597d1189928707d4c74670badb93d26be1ce60a338b198c1307abeff3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAq9HJx252vZXiR6HgQe8hu5u0KdukJtnD_nu3VvDmaWB4n2eYF6FbCg8UQD4mClXBCTBBKIgSiDxDM1pITkQF_BzNABgjTJT0El2ltAOAQjI6Q7uVzyZ2ztohueBxG0NKZOs2W2J8juEwYt33YUz32GsfyH7os-v1aCK2wfXTWvsOL3rsjh6rW_OEFx7rHPYuZdfi5CZE58l9jS6s7pO5-Z1z9PHy_Ll8I-v319VysSYtA8jEcFGVZVHLjtKqrlklQXailaKU0OiuqXnHysbQ1pSgOa8aWlct5SB1Y6zlc3R3sh5i-BpMymoXhuing4pTLhgTHMSUYqfUz7_RWHWIbq_jqCioY6Pq1KiaGlU_jSo5QfwEpSnsNyb-qf-hvgFUiXnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134224304</pqid></control><display><type>article</type><title>Interdiffusion cross-high-entropy alloys, nano-multilayer foils, and Al interface: An atomistic simulation</title><source>SpringerNature Journals</source><creator>Wu, Baolei ; Yu, Weiyuan ; Zhu, Wenqi ; Li, Yang</creator><creatorcontrib>Wu, Baolei ; Yu, Weiyuan ; Zhu, Wenqi ; Li, Yang</creatorcontrib><description>Molecular dynamics simulation is used to investigate the interdiffusion across the interfaces of high-entropy alloys (HEAs), reactive nano-multilayer foils (NMFs), NMFs, and crystalline Al. This study reveals highly asymmetric interdiffusivity within adjacent reactive NMFs and HEAs, exhibiting strong temperature dependency. Abnormal interdiffusion is observed in the diffusion region, which originates from the original solid/liquid interface. The mass transport phenomenon in this polyphase system involves an intricate interaction between coinstantaneous structure transformations: from the nano-multilayer structure to the solid-solution phase to a liquid–crystal Al phase. These transformations are driven by understated shifts in local bonding type with other atoms, wetting and spreading behaviors, and discrepancies in the inherent diffusivity of alloy components. The inherent complexity emerges as the heterostructure approaches equilibrium. This study discusses the important applications of interdiffusion in HEAs, NMFs, and crystalline Al fillers during the brazing process. This study sheds light on the interdiffusion in these systems and discusses its practical implications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10460-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Atomic properties ; Bonding strength ; Characterization and Evaluation of Materials ; Chemical bonds ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites &amp; Nanocomposites ; Crystallography and Scattering Methods ; Entropy ; Foils ; Friction stir welding ; Heterostructures ; High entropy alloys ; Interdiffusion ; Interfaces ; Mass transport ; Materials Science ; Mechanical properties ; Metals ; Molecular dynamics ; Multilayers ; Polymer Sciences ; Simulation ; Solid Mechanics ; Solid solutions ; Solids ; Temperature ; Temperature dependence ; Transport phenomena</subject><ispartof>Journal of materials science, 2024-12, Vol.59 (46), p.21348-21361</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e34866597d1189928707d4c74670badb93d26be1ce60a338b198c1307abeff3</cites><orcidid>0000-0002-0948-0544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10460-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10460-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Baolei</creatorcontrib><creatorcontrib>Yu, Weiyuan</creatorcontrib><creatorcontrib>Zhu, Wenqi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><title>Interdiffusion cross-high-entropy alloys, nano-multilayer foils, and Al interface: An atomistic simulation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Molecular dynamics simulation is used to investigate the interdiffusion across the interfaces of high-entropy alloys (HEAs), reactive nano-multilayer foils (NMFs), NMFs, and crystalline Al. This study reveals highly asymmetric interdiffusivity within adjacent reactive NMFs and HEAs, exhibiting strong temperature dependency. Abnormal interdiffusion is observed in the diffusion region, which originates from the original solid/liquid interface. The mass transport phenomenon in this polyphase system involves an intricate interaction between coinstantaneous structure transformations: from the nano-multilayer structure to the solid-solution phase to a liquid–crystal Al phase. These transformations are driven by understated shifts in local bonding type with other atoms, wetting and spreading behaviors, and discrepancies in the inherent diffusivity of alloy components. The inherent complexity emerges as the heterostructure approaches equilibrium. This study discusses the important applications of interdiffusion in HEAs, NMFs, and crystalline Al fillers during the brazing process. This study sheds light on the interdiffusion in these systems and discusses its practical implications.</description><subject>Alloys</subject><subject>Atomic properties</subject><subject>Bonding strength</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites &amp; Nanocomposites</subject><subject>Crystallography and Scattering Methods</subject><subject>Entropy</subject><subject>Foils</subject><subject>Friction stir welding</subject><subject>Heterostructures</subject><subject>High entropy alloys</subject><subject>Interdiffusion</subject><subject>Interfaces</subject><subject>Mass transport</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Molecular dynamics</subject><subject>Multilayers</subject><subject>Polymer Sciences</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Solid solutions</subject><subject>Solids</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Transport phenomena</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAq9HJx252vZXiR6HgQe8hu5u0KdukJtnD_nu3VvDmaWB4n2eYF6FbCg8UQD4mClXBCTBBKIgSiDxDM1pITkQF_BzNABgjTJT0El2ltAOAQjI6Q7uVzyZ2ztohueBxG0NKZOs2W2J8juEwYt33YUz32GsfyH7os-v1aCK2wfXTWvsOL3rsjh6rW_OEFx7rHPYuZdfi5CZE58l9jS6s7pO5-Z1z9PHy_Ll8I-v319VysSYtA8jEcFGVZVHLjtKqrlklQXailaKU0OiuqXnHysbQ1pSgOa8aWlct5SB1Y6zlc3R3sh5i-BpMymoXhuing4pTLhgTHMSUYqfUz7_RWHWIbq_jqCioY6Pq1KiaGlU_jSo5QfwEpSnsNyb-qf-hvgFUiXnY</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wu, Baolei</creator><creator>Yu, Weiyuan</creator><creator>Zhu, Wenqi</creator><creator>Li, Yang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0948-0544</orcidid></search><sort><creationdate>20241201</creationdate><title>Interdiffusion cross-high-entropy alloys, nano-multilayer foils, and Al interface: An atomistic simulation</title><author>Wu, Baolei ; Yu, Weiyuan ; Zhu, Wenqi ; Li, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e34866597d1189928707d4c74670badb93d26be1ce60a338b198c1307abeff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Atomic properties</topic><topic>Bonding strength</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites &amp; Nanocomposites</topic><topic>Crystallography and Scattering Methods</topic><topic>Entropy</topic><topic>Foils</topic><topic>Friction stir welding</topic><topic>Heterostructures</topic><topic>High entropy alloys</topic><topic>Interdiffusion</topic><topic>Interfaces</topic><topic>Mass transport</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Molecular dynamics</topic><topic>Multilayers</topic><topic>Polymer Sciences</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Solid solutions</topic><topic>Solids</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Baolei</creatorcontrib><creatorcontrib>Yu, Weiyuan</creatorcontrib><creatorcontrib>Zhu, Wenqi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Baolei</au><au>Yu, Weiyuan</au><au>Zhu, Wenqi</au><au>Li, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdiffusion cross-high-entropy alloys, nano-multilayer foils, and Al interface: An atomistic simulation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>59</volume><issue>46</issue><spage>21348</spage><epage>21361</epage><pages>21348-21361</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Molecular dynamics simulation is used to investigate the interdiffusion across the interfaces of high-entropy alloys (HEAs), reactive nano-multilayer foils (NMFs), NMFs, and crystalline Al. This study reveals highly asymmetric interdiffusivity within adjacent reactive NMFs and HEAs, exhibiting strong temperature dependency. Abnormal interdiffusion is observed in the diffusion region, which originates from the original solid/liquid interface. The mass transport phenomenon in this polyphase system involves an intricate interaction between coinstantaneous structure transformations: from the nano-multilayer structure to the solid-solution phase to a liquid–crystal Al phase. These transformations are driven by understated shifts in local bonding type with other atoms, wetting and spreading behaviors, and discrepancies in the inherent diffusivity of alloy components. The inherent complexity emerges as the heterostructure approaches equilibrium. This study discusses the important applications of interdiffusion in HEAs, NMFs, and crystalline Al fillers during the brazing process. This study sheds light on the interdiffusion in these systems and discusses its practical implications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10460-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0948-0544</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-12, Vol.59 (46), p.21348-21361
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_3134224304
source SpringerNature Journals
subjects Alloys
Atomic properties
Bonding strength
Characterization and Evaluation of Materials
Chemical bonds
Chemistry and Materials Science
Classical Mechanics
Composite materials
Composites & Nanocomposites
Crystallography and Scattering Methods
Entropy
Foils
Friction stir welding
Heterostructures
High entropy alloys
Interdiffusion
Interfaces
Mass transport
Materials Science
Mechanical properties
Metals
Molecular dynamics
Multilayers
Polymer Sciences
Simulation
Solid Mechanics
Solid solutions
Solids
Temperature
Temperature dependence
Transport phenomena
title Interdiffusion cross-high-entropy alloys, nano-multilayer foils, and Al interface: An atomistic simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdiffusion%20cross-high-entropy%20alloys,%20nano-multilayer%20foils,%20and%20Al%20interface:%20An%20atomistic%20simulation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wu,%20Baolei&rft.date=2024-12-01&rft.volume=59&rft.issue=46&rft.spage=21348&rft.epage=21361&rft.pages=21348-21361&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10460-7&rft_dat=%3Cproquest_cross%3E3134224304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134224304&rft_id=info:pmid/&rfr_iscdi=true