Asymptotic Stability of Delayed Complex Balanced Reaction Networks with Non-Mass Action Kinetics

We consider delayed chemical reaction networks with non-mass action monotone kinetics and show that complex balancing implies that within each positive stoichiometric compatibility class there is a unique positive equilibrium that is locally asymptotically stable relative to its class. The main tool...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2025-02, Vol.35 (1), Article 20
Hauptverfasser: Vághy, Mihály A., Szederkényi, Gábor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of nonlinear science
container_volume 35
creator Vághy, Mihály A.
Szederkényi, Gábor
description We consider delayed chemical reaction networks with non-mass action monotone kinetics and show that complex balancing implies that within each positive stoichiometric compatibility class there is a unique positive equilibrium that is locally asymptotically stable relative to its class. The main tools of the proofs are respectively a version of the well-known classical logarithmic Lyapunov function applied to kinetic systems and its generalization to the delayed case as a Lyapunov–Krasovskii functional. Finally, we demonstrate our results through illustrative examples.
doi_str_mv 10.1007/s00332-024-10115-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134049183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134049183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-aaeb35502ec0a981f9605ea3e3ac088156b77a243618fde7b32ac3ab5a440d683</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqXwApwscQ6MlyTOsZRVlCKxnM3EdSCQxsV2VfL2BILEjdNI__yL9BFyyOCYAeQnAUAIngCXCQPG0iTbIiMme4nJLN8mIyiESlSRy12yF8IbAMtTwUfkeRK65Sq6WBv6ELGsmzp21FX0zDbY2QWduuWqsZ_0FBtsTS_cWzSxdi2d27hx_j3QTR1f6dy1yS2GQCfD96ZubV8a9slOhU2wB793TJ4uzh-nV8ns7vJ6OpklhksZE0RbijQFbg1goVhVZJBaFFagAaVYmpV5jlyKjKlqYfNScDQCyxSlhEWmxJgcDb0r7z7WNkT95ta-7Se1YEKCLJgSvYsPLuNdCN5WeuXrJfpOM9DfJPVAUvck9Q9JnfUhMYRCb25frP-r_if1BVPYdms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134049183</pqid></control><display><type>article</type><title>Asymptotic Stability of Delayed Complex Balanced Reaction Networks with Non-Mass Action Kinetics</title><source>Springer Nature - Complete Springer Journals</source><creator>Vághy, Mihály A. ; Szederkényi, Gábor</creator><creatorcontrib>Vághy, Mihály A. ; Szederkényi, Gábor</creatorcontrib><description>We consider delayed chemical reaction networks with non-mass action monotone kinetics and show that complex balancing implies that within each positive stoichiometric compatibility class there is a unique positive equilibrium that is locally asymptotically stable relative to its class. The main tools of the proofs are respectively a version of the well-known classical logarithmic Lyapunov function applied to kinetic systems and its generalization to the delayed case as a Lyapunov–Krasovskii functional. Finally, we demonstrate our results through illustrative examples.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-024-10115-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Chemical reactions ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Kinetics ; Liapunov functions ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Journal of nonlinear science, 2025-02, Vol.35 (1), Article 20</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-aaeb35502ec0a981f9605ea3e3ac088156b77a243618fde7b32ac3ab5a440d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-024-10115-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-024-10115-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Vághy, Mihály A.</creatorcontrib><creatorcontrib>Szederkényi, Gábor</creatorcontrib><title>Asymptotic Stability of Delayed Complex Balanced Reaction Networks with Non-Mass Action Kinetics</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>We consider delayed chemical reaction networks with non-mass action monotone kinetics and show that complex balancing implies that within each positive stoichiometric compatibility class there is a unique positive equilibrium that is locally asymptotically stable relative to its class. The main tools of the proofs are respectively a version of the well-known classical logarithmic Lyapunov function applied to kinetic systems and its generalization to the delayed case as a Lyapunov–Krasovskii functional. Finally, we demonstrate our results through illustrative examples.</description><subject>Analysis</subject><subject>Chemical reactions</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Kinetics</subject><subject>Liapunov functions</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMlOwzAQhi0EEqXwApwscQ6MlyTOsZRVlCKxnM3EdSCQxsV2VfL2BILEjdNI__yL9BFyyOCYAeQnAUAIngCXCQPG0iTbIiMme4nJLN8mIyiESlSRy12yF8IbAMtTwUfkeRK65Sq6WBv6ELGsmzp21FX0zDbY2QWduuWqsZ_0FBtsTS_cWzSxdi2d27hx_j3QTR1f6dy1yS2GQCfD96ZubV8a9slOhU2wB793TJ4uzh-nV8ns7vJ6OpklhksZE0RbijQFbg1goVhVZJBaFFagAaVYmpV5jlyKjKlqYfNScDQCyxSlhEWmxJgcDb0r7z7WNkT95ta-7Se1YEKCLJgSvYsPLuNdCN5WeuXrJfpOM9DfJPVAUvck9Q9JnfUhMYRCb25frP-r_if1BVPYdms</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Vághy, Mihály A.</creator><creator>Szederkényi, Gábor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250201</creationdate><title>Asymptotic Stability of Delayed Complex Balanced Reaction Networks with Non-Mass Action Kinetics</title><author>Vághy, Mihály A. ; Szederkényi, Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-aaeb35502ec0a981f9605ea3e3ac088156b77a243618fde7b32ac3ab5a440d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Analysis</topic><topic>Chemical reactions</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Kinetics</topic><topic>Liapunov functions</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vághy, Mihály A.</creatorcontrib><creatorcontrib>Szederkényi, Gábor</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vághy, Mihály A.</au><au>Szederkényi, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Stability of Delayed Complex Balanced Reaction Networks with Non-Mass Action Kinetics</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><artnum>20</artnum><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>We consider delayed chemical reaction networks with non-mass action monotone kinetics and show that complex balancing implies that within each positive stoichiometric compatibility class there is a unique positive equilibrium that is locally asymptotically stable relative to its class. The main tools of the proofs are respectively a version of the well-known classical logarithmic Lyapunov function applied to kinetic systems and its generalization to the delayed case as a Lyapunov–Krasovskii functional. Finally, we demonstrate our results through illustrative examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-024-10115-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-8974
ispartof Journal of nonlinear science, 2025-02, Vol.35 (1), Article 20
issn 0938-8974
1432-1467
language eng
recordid cdi_proquest_journals_3134049183
source Springer Nature - Complete Springer Journals
subjects Analysis
Chemical reactions
Classical Mechanics
Economic Theory/Quantitative Economics/Mathematical Methods
Kinetics
Liapunov functions
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Asymptotic Stability of Delayed Complex Balanced Reaction Networks with Non-Mass Action Kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Stability%20of%20Delayed%20Complex%20Balanced%20Reaction%20Networks%20with%20Non-Mass%20Action%20Kinetics&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=V%C3%A1ghy,%20Mih%C3%A1ly%20A.&rft.date=2025-02-01&rft.volume=35&rft.issue=1&rft.artnum=20&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-024-10115-6&rft_dat=%3Cproquest_cross%3E3134049183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134049183&rft_id=info:pmid/&rfr_iscdi=true