Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis
We study the phase behaviour of the Al x CrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential appro...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2024-11, Vol.10 (1), p.271 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 271 |
container_title | npj computational materials |
container_volume | 10 |
creator | Woodgate, Christopher D. Marchant, George A. Pártay, Livia B. Staunton, Julie B. |
description | We study the phase behaviour of the Al
x
CrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential approximation to average over disorder. Via application of a Landau-type linear response theory, we infer preferential chemical orderings directly. In addition, we recover a pairwise form of the alloy internal energy suitable for study via atomistic simulations, which in this work are performed using the nested sampling algorithm, which is well-suited for studying complex potential energy surfaces. When the underlying lattice is fcc, at low concentrations of Al, depending on the value of
x
, we predict either an L1
2
or D0
22
ordering emerging below approximately 1000 K. On the other hand, when the underlying lattice is bcc, consistent with experimental observations, we predict B2 ordering temperatures higher than the melting temperature of the alloy, confirming that this ordered phase forms directly from the melt. For both fcc and bcc systems, chemical orderings are dominated by Al moving to one sublattice, Ni and Co the other, while Cr and Fe remain comparatively disordered. On the bcc lattice, our atomistic modelling suggests eventual decomposition into B2 NiAl and Cr-rich phases. These results shed light on the fundamental physical origins of atomic ordering tendencies in these intriguing materials. |
doi_str_mv | 10.1038/s41524-024-01445-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3133866809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133866809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1521-a294cc738155b10439271a68056ea813252d242fa01e8da0f933ea7dc02d79043</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdBsNS-gKsBtx2985M_d6VaFYourOswSSbNlJiJMxNrHsG3dkIFF4cLl49z7j0IXVG4ocDTWydoxASBSVSIiBzP0IxBlBCexXCBFs4dAIBmLGUCZujnzduh9INVS-waYz2xstsrbGyl7BLLrsJ9I53CzstCt9qP2NTYNwqv2u-13ai1edG40fuGqM5b049Ytq0Z77DuXNh6h2trPrDEvbIhppBef4Ws-82OFMG3ChGyHZ12l-i8lq1Ti785R--bh936iWxfH5_Xqy3pw2eUSJaJskx4SqOooCB4xhIq4xSiWMmUchaxiglWS6AqrSTUGedKJlUJrEqywM_R9cm3t-ZzUM7nBzPYcITLOeU8jYNXFih-olxvdSjE_lMU8qnq_FR1DpOmqvMj_wU7BHP2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133866809</pqid></control><display><type>article</type><title>Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><creator>Woodgate, Christopher D. ; Marchant, George A. ; Pártay, Livia B. ; Staunton, Julie B.</creator><creatorcontrib>Woodgate, Christopher D. ; Marchant, George A. ; Pártay, Livia B. ; Staunton, Julie B.</creatorcontrib><description>We study the phase behaviour of the Al
x
CrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential approximation to average over disorder. Via application of a Landau-type linear response theory, we infer preferential chemical orderings directly. In addition, we recover a pairwise form of the alloy internal energy suitable for study via atomistic simulations, which in this work are performed using the nested sampling algorithm, which is well-suited for studying complex potential energy surfaces. When the underlying lattice is fcc, at low concentrations of Al, depending on the value of
x
, we predict either an L1
2
or D0
22
ordering emerging below approximately 1000 K. On the other hand, when the underlying lattice is bcc, consistent with experimental observations, we predict B2 ordering temperatures higher than the melting temperature of the alloy, confirming that this ordered phase forms directly from the melt. For both fcc and bcc systems, chemical orderings are dominated by Al moving to one sublattice, Ni and Co the other, while Cr and Fe remain comparatively disordered. On the bcc lattice, our atomistic modelling suggests eventual decomposition into B2 NiAl and Cr-rich phases. These results shed light on the fundamental physical origins of atomic ordering tendencies in these intriguing materials.</description><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-024-01445-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/1034/1038 ; 639/301/119/1002 ; 639/766/119 ; 639/766/25 ; Algorithms ; Alloys ; Approximation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coherent potential approximation ; Computational Intelligence ; Density functional theory ; Energy ; Entropy ; High entropy alloys ; Internal energy ; Iron ; Low concentrations ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Melt temperature ; Nickel aluminides ; Nickel base alloys ; Nickel compounds ; Phase stability ; Physics ; Potential energy ; Short range order ; Solid solutions ; Temperature ; Theoretical</subject><ispartof>npj computational materials, 2024-11, Vol.10 (1), p.271</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1521-a294cc738155b10439271a68056ea813252d242fa01e8da0f933ea7dc02d79043</cites><orcidid>0000-0002-3578-8753 ; 0000-0002-6756-6936 ; 0000-0003-4876-5558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-024-01445-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-024-01445-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27929,27930,41125,42194,51581</link.rule.ids></links><search><creatorcontrib>Woodgate, Christopher D.</creatorcontrib><creatorcontrib>Marchant, George A.</creatorcontrib><creatorcontrib>Pártay, Livia B.</creatorcontrib><creatorcontrib>Staunton, Julie B.</creatorcontrib><title>Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>We study the phase behaviour of the Al
x
CrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential approximation to average over disorder. Via application of a Landau-type linear response theory, we infer preferential chemical orderings directly. In addition, we recover a pairwise form of the alloy internal energy suitable for study via atomistic simulations, which in this work are performed using the nested sampling algorithm, which is well-suited for studying complex potential energy surfaces. When the underlying lattice is fcc, at low concentrations of Al, depending on the value of
x
, we predict either an L1
2
or D0
22
ordering emerging below approximately 1000 K. On the other hand, when the underlying lattice is bcc, consistent with experimental observations, we predict B2 ordering temperatures higher than the melting temperature of the alloy, confirming that this ordered phase forms directly from the melt. For both fcc and bcc systems, chemical orderings are dominated by Al moving to one sublattice, Ni and Co the other, while Cr and Fe remain comparatively disordered. On the bcc lattice, our atomistic modelling suggests eventual decomposition into B2 NiAl and Cr-rich phases. These results shed light on the fundamental physical origins of atomic ordering tendencies in these intriguing materials.</description><subject>639/301/1023/1026</subject><subject>639/301/1034/1038</subject><subject>639/301/119/1002</subject><subject>639/766/119</subject><subject>639/766/25</subject><subject>Algorithms</subject><subject>Alloys</subject><subject>Approximation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coherent potential approximation</subject><subject>Computational Intelligence</subject><subject>Density functional theory</subject><subject>Energy</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Internal energy</subject><subject>Iron</subject><subject>Low concentrations</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Melt temperature</subject><subject>Nickel aluminides</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Phase stability</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Short range order</subject><subject>Solid solutions</subject><subject>Temperature</subject><subject>Theoretical</subject><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkM1Kw0AUhQdBsNS-gKsBtx2985M_d6VaFYourOswSSbNlJiJMxNrHsG3dkIFF4cLl49z7j0IXVG4ocDTWydoxASBSVSIiBzP0IxBlBCexXCBFs4dAIBmLGUCZujnzduh9INVS-waYz2xstsrbGyl7BLLrsJ9I53CzstCt9qP2NTYNwqv2u-13ai1edG40fuGqM5b049Ytq0Z77DuXNh6h2trPrDEvbIhppBef4Ws-82OFMG3ChGyHZ12l-i8lq1Ti785R--bh936iWxfH5_Xqy3pw2eUSJaJskx4SqOooCB4xhIq4xSiWMmUchaxiglWS6AqrSTUGedKJlUJrEqywM_R9cm3t-ZzUM7nBzPYcITLOeU8jYNXFih-olxvdSjE_lMU8qnq_FR1DpOmqvMj_wU7BHP2</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Woodgate, Christopher D.</creator><creator>Marchant, George A.</creator><creator>Pártay, Livia B.</creator><creator>Staunton, Julie B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3578-8753</orcidid><orcidid>https://orcid.org/0000-0002-6756-6936</orcidid><orcidid>https://orcid.org/0000-0003-4876-5558</orcidid></search><sort><creationdate>20241128</creationdate><title>Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis</title><author>Woodgate, Christopher D. ; Marchant, George A. ; Pártay, Livia B. ; Staunton, Julie B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1521-a294cc738155b10439271a68056ea813252d242fa01e8da0f933ea7dc02d79043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/1023/1026</topic><topic>639/301/1034/1038</topic><topic>639/301/119/1002</topic><topic>639/766/119</topic><topic>639/766/25</topic><topic>Algorithms</topic><topic>Alloys</topic><topic>Approximation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coherent potential approximation</topic><topic>Computational Intelligence</topic><topic>Density functional theory</topic><topic>Energy</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Internal energy</topic><topic>Iron</topic><topic>Low concentrations</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Melt temperature</topic><topic>Nickel aluminides</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Phase stability</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Short range order</topic><topic>Solid solutions</topic><topic>Temperature</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodgate, Christopher D.</creatorcontrib><creatorcontrib>Marchant, George A.</creatorcontrib><creatorcontrib>Pártay, Livia B.</creatorcontrib><creatorcontrib>Staunton, Julie B.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodgate, Christopher D.</au><au>Marchant, George A.</au><au>Pártay, Livia B.</au><au>Staunton, Julie B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2024-11-28</date><risdate>2024</risdate><volume>10</volume><issue>1</issue><spage>271</spage><pages>271-</pages><eissn>2057-3960</eissn><abstract>We study the phase behaviour of the Al
x
CrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential approximation to average over disorder. Via application of a Landau-type linear response theory, we infer preferential chemical orderings directly. In addition, we recover a pairwise form of the alloy internal energy suitable for study via atomistic simulations, which in this work are performed using the nested sampling algorithm, which is well-suited for studying complex potential energy surfaces. When the underlying lattice is fcc, at low concentrations of Al, depending on the value of
x
, we predict either an L1
2
or D0
22
ordering emerging below approximately 1000 K. On the other hand, when the underlying lattice is bcc, consistent with experimental observations, we predict B2 ordering temperatures higher than the melting temperature of the alloy, confirming that this ordered phase forms directly from the melt. For both fcc and bcc systems, chemical orderings are dominated by Al moving to one sublattice, Ni and Co the other, while Cr and Fe remain comparatively disordered. On the bcc lattice, our atomistic modelling suggests eventual decomposition into B2 NiAl and Cr-rich phases. These results shed light on the fundamental physical origins of atomic ordering tendencies in these intriguing materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-024-01445-w</doi><orcidid>https://orcid.org/0000-0002-3578-8753</orcidid><orcidid>https://orcid.org/0000-0002-6756-6936</orcidid><orcidid>https://orcid.org/0000-0003-4876-5558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2057-3960 |
ispartof | npj computational materials, 2024-11, Vol.10 (1), p.271 |
issn | 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_3133866809 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals |
subjects | 639/301/1023/1026 639/301/1034/1038 639/301/119/1002 639/766/119 639/766/25 Algorithms Alloys Approximation Characterization and Evaluation of Materials Chemistry and Materials Science Coherent potential approximation Computational Intelligence Density functional theory Energy Entropy High entropy alloys Internal energy Iron Low concentrations Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Melt temperature Nickel aluminides Nickel base alloys Nickel compounds Phase stability Physics Potential energy Short range order Solid solutions Temperature Theoretical |
title | Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20short-range%20order,%20and%20phase%20stability%20of%20the%20AlxCrFeCoNi%20high-entropy%20alloy:%20insights%20from%20a%20perturbative,%20DFT-based%20analysis&rft.jtitle=npj%20computational%20materials&rft.au=Woodgate,%20Christopher%20D.&rft.date=2024-11-28&rft.volume=10&rft.issue=1&rft.spage=271&rft.pages=271-&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-024-01445-w&rft_dat=%3Cproquest_sprin%3E3133866809%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133866809&rft_id=info:pmid/&rfr_iscdi=true |