Nonlinear bending and vibration analysis of a variable-width piezoelectric nanoplate with flexoelectric effects
The nonlinear bending and vibration behaviors of a variable-width piezoelectric nanoplate considering flexoelectric effect are investigated in this paper. The nonlinear Mindlin plate theory and finite element method are applied to derive the governing equations of variable-width piezoelectric nanopl...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2024-10, Vol.235 (12), p.7641-7660 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7660 |
---|---|
container_issue | 12 |
container_start_page | 7641 |
container_title | Acta mechanica |
container_volume | 235 |
creator | Yue, Yanmei Yang, Xiao Duan, Jingbo Liu, Jinxi |
description | The nonlinear bending and vibration behaviors of a variable-width piezoelectric nanoplate considering flexoelectric effect are investigated in this paper. The nonlinear Mindlin plate theory and finite element method are applied to derive the governing equations of variable-width piezoelectric nanoplate with flexoelectricity. The influences of geometric nonlinearity, flexoelectricity, and varying width on the bending deflection and natural frequency of the piezoelectric nanoplate with flexoelectricity under four kinds of boundary conditions are explored in detail. The numerical results show that the flexoelectric effect can strongly influence the maximum deflection, the morphology of deformation, and the natural frequency of the variable-width piezoelectric nanoplate. The consideration of geometric nonlinearity becomes necessary for nanoplate exhibiting strong flexoelectricity or subject to significant voltage loads. The boundary conditions not only affect the morphology of deformation but also influence the variation trend of natural frequency with the variable-width ratio of the piezoelectric nanoplate. While the variation trend of maximum deflection is jointly affected by the boundary conditions and flexoelectricity. The closer the shape of the piezoelectric nanoplate is to a triangle, the greater the combined effect of boundary conditions and flexoelectricity on the variation trend of maximum deflection. The results of this study can contribute to the optimization of piezoelectric nanostructures, and they are helpful in enhancing our comprehension of the mechanical behavior of piezoelectric nanostructures. |
doi_str_mv | 10.1007/s00707-024-04112-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133856599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133856599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a1b4639a87c4eeb90c52f3a0a92033e2f198e642bbbe0d42919a0739a570bae53</originalsourceid><addsrcrecordid>eNp9UMtKQzEQDaJgffyAq4Dr6CS5j2Yp4gtEN7oOk9u5GrkmNbm21q83tUJ3bmbmcB4wh7ETCWcSoD3PZUArQFUCKimVMDtsIhtpRGN0u8smACBFbVrYZwc5vxWk2kpOWHyIYfCBMHFHYebDC8cw4wvvEo4-hoJwWGWfeew58gUmj24gsfSz8ZXPPX1HGqgbk-94wBDnA47El76Q_UBfW5L6vlz5iO31OGQ6_tuH7Pn66unyVtw_3txdXtyLTgGMAqWrGm1w2nYVkTPQ1arXCGgUaE2ql2ZKTaWccwSzShlpENpiqFtwSLU-ZKeb3HmKH5-UR_sWP1P5JVsttZ7WTW1MUamNqksx50S9nSf_jmllJdh1sXZTrC3F2t9i7dqkN6ZcxOGF0jb6H9cPGKl9Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133856599</pqid></control><display><type>article</type><title>Nonlinear bending and vibration analysis of a variable-width piezoelectric nanoplate with flexoelectric effects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yue, Yanmei ; Yang, Xiao ; Duan, Jingbo ; Liu, Jinxi</creator><creatorcontrib>Yue, Yanmei ; Yang, Xiao ; Duan, Jingbo ; Liu, Jinxi</creatorcontrib><description>The nonlinear bending and vibration behaviors of a variable-width piezoelectric nanoplate considering flexoelectric effect are investigated in this paper. The nonlinear Mindlin plate theory and finite element method are applied to derive the governing equations of variable-width piezoelectric nanoplate with flexoelectricity. The influences of geometric nonlinearity, flexoelectricity, and varying width on the bending deflection and natural frequency of the piezoelectric nanoplate with flexoelectricity under four kinds of boundary conditions are explored in detail. The numerical results show that the flexoelectric effect can strongly influence the maximum deflection, the morphology of deformation, and the natural frequency of the variable-width piezoelectric nanoplate. The consideration of geometric nonlinearity becomes necessary for nanoplate exhibiting strong flexoelectricity or subject to significant voltage loads. The boundary conditions not only affect the morphology of deformation but also influence the variation trend of natural frequency with the variable-width ratio of the piezoelectric nanoplate. While the variation trend of maximum deflection is jointly affected by the boundary conditions and flexoelectricity. The closer the shape of the piezoelectric nanoplate is to a triangle, the greater the combined effect of boundary conditions and flexoelectricity on the variation trend of maximum deflection. The results of this study can contribute to the optimization of piezoelectric nanostructures, and they are helpful in enhancing our comprehension of the mechanical behavior of piezoelectric nanostructures.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-024-04112-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Boundary conditions ; Classical and Continuum Physics ; Control ; Deflection ; Deformation effects ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Finite element method ; Frequency variation ; Geometric nonlinearity ; Heat and Mass Transfer ; Mechanical properties ; Mindlin plates ; Morphology ; Nanostructure ; Original Paper ; Piezoelectricity ; Plate theory ; Resonant frequencies ; Shape effects ; Solid Mechanics ; Theoretical and Applied Mechanics ; Triangles ; Vibration ; Vibration analysis</subject><ispartof>Acta mechanica, 2024-10, Vol.235 (12), p.7641-7660</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a1b4639a87c4eeb90c52f3a0a92033e2f198e642bbbe0d42919a0739a570bae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-024-04112-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-024-04112-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Yue, Yanmei</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Duan, Jingbo</creatorcontrib><creatorcontrib>Liu, Jinxi</creatorcontrib><title>Nonlinear bending and vibration analysis of a variable-width piezoelectric nanoplate with flexoelectric effects</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The nonlinear bending and vibration behaviors of a variable-width piezoelectric nanoplate considering flexoelectric effect are investigated in this paper. The nonlinear Mindlin plate theory and finite element method are applied to derive the governing equations of variable-width piezoelectric nanoplate with flexoelectricity. The influences of geometric nonlinearity, flexoelectricity, and varying width on the bending deflection and natural frequency of the piezoelectric nanoplate with flexoelectricity under four kinds of boundary conditions are explored in detail. The numerical results show that the flexoelectric effect can strongly influence the maximum deflection, the morphology of deformation, and the natural frequency of the variable-width piezoelectric nanoplate. The consideration of geometric nonlinearity becomes necessary for nanoplate exhibiting strong flexoelectricity or subject to significant voltage loads. The boundary conditions not only affect the morphology of deformation but also influence the variation trend of natural frequency with the variable-width ratio of the piezoelectric nanoplate. While the variation trend of maximum deflection is jointly affected by the boundary conditions and flexoelectricity. The closer the shape of the piezoelectric nanoplate is to a triangle, the greater the combined effect of boundary conditions and flexoelectricity on the variation trend of maximum deflection. The results of this study can contribute to the optimization of piezoelectric nanostructures, and they are helpful in enhancing our comprehension of the mechanical behavior of piezoelectric nanostructures.</description><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Deflection</subject><subject>Deformation effects</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Finite element method</subject><subject>Frequency variation</subject><subject>Geometric nonlinearity</subject><subject>Heat and Mass Transfer</subject><subject>Mechanical properties</subject><subject>Mindlin plates</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Original Paper</subject><subject>Piezoelectricity</subject><subject>Plate theory</subject><subject>Resonant frequencies</subject><subject>Shape effects</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Triangles</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKQzEQDaJgffyAq4Dr6CS5j2Yp4gtEN7oOk9u5GrkmNbm21q83tUJ3bmbmcB4wh7ETCWcSoD3PZUArQFUCKimVMDtsIhtpRGN0u8smACBFbVrYZwc5vxWk2kpOWHyIYfCBMHFHYebDC8cw4wvvEo4-hoJwWGWfeew58gUmj24gsfSz8ZXPPX1HGqgbk-94wBDnA47El76Q_UBfW5L6vlz5iO31OGQ6_tuH7Pn66unyVtw_3txdXtyLTgGMAqWrGm1w2nYVkTPQ1arXCGgUaE2ql2ZKTaWccwSzShlpENpiqFtwSLU-ZKeb3HmKH5-UR_sWP1P5JVsttZ7WTW1MUamNqksx50S9nSf_jmllJdh1sXZTrC3F2t9i7dqkN6ZcxOGF0jb6H9cPGKl9Qw</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Yue, Yanmei</creator><creator>Yang, Xiao</creator><creator>Duan, Jingbo</creator><creator>Liu, Jinxi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20241017</creationdate><title>Nonlinear bending and vibration analysis of a variable-width piezoelectric nanoplate with flexoelectric effects</title><author>Yue, Yanmei ; Yang, Xiao ; Duan, Jingbo ; Liu, Jinxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a1b4639a87c4eeb90c52f3a0a92033e2f198e642bbbe0d42919a0739a570bae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Deflection</topic><topic>Deformation effects</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Finite element method</topic><topic>Frequency variation</topic><topic>Geometric nonlinearity</topic><topic>Heat and Mass Transfer</topic><topic>Mechanical properties</topic><topic>Mindlin plates</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Original Paper</topic><topic>Piezoelectricity</topic><topic>Plate theory</topic><topic>Resonant frequencies</topic><topic>Shape effects</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Triangles</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Yanmei</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Duan, Jingbo</creatorcontrib><creatorcontrib>Liu, Jinxi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Yanmei</au><au>Yang, Xiao</au><au>Duan, Jingbo</au><au>Liu, Jinxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear bending and vibration analysis of a variable-width piezoelectric nanoplate with flexoelectric effects</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2024-10-17</date><risdate>2024</risdate><volume>235</volume><issue>12</issue><spage>7641</spage><epage>7660</epage><pages>7641-7660</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The nonlinear bending and vibration behaviors of a variable-width piezoelectric nanoplate considering flexoelectric effect are investigated in this paper. The nonlinear Mindlin plate theory and finite element method are applied to derive the governing equations of variable-width piezoelectric nanoplate with flexoelectricity. The influences of geometric nonlinearity, flexoelectricity, and varying width on the bending deflection and natural frequency of the piezoelectric nanoplate with flexoelectricity under four kinds of boundary conditions are explored in detail. The numerical results show that the flexoelectric effect can strongly influence the maximum deflection, the morphology of deformation, and the natural frequency of the variable-width piezoelectric nanoplate. The consideration of geometric nonlinearity becomes necessary for nanoplate exhibiting strong flexoelectricity or subject to significant voltage loads. The boundary conditions not only affect the morphology of deformation but also influence the variation trend of natural frequency with the variable-width ratio of the piezoelectric nanoplate. While the variation trend of maximum deflection is jointly affected by the boundary conditions and flexoelectricity. The closer the shape of the piezoelectric nanoplate is to a triangle, the greater the combined effect of boundary conditions and flexoelectricity on the variation trend of maximum deflection. The results of this study can contribute to the optimization of piezoelectric nanostructures, and they are helpful in enhancing our comprehension of the mechanical behavior of piezoelectric nanostructures.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-024-04112-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2024-10, Vol.235 (12), p.7641-7660 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_3133856599 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary conditions Classical and Continuum Physics Control Deflection Deformation effects Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Finite element method Frequency variation Geometric nonlinearity Heat and Mass Transfer Mechanical properties Mindlin plates Morphology Nanostructure Original Paper Piezoelectricity Plate theory Resonant frequencies Shape effects Solid Mechanics Theoretical and Applied Mechanics Triangles Vibration Vibration analysis |
title | Nonlinear bending and vibration analysis of a variable-width piezoelectric nanoplate with flexoelectric effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20bending%20and%20vibration%20analysis%20of%20a%20variable-width%20piezoelectric%20nanoplate%20with%20flexoelectric%20effects&rft.jtitle=Acta%20mechanica&rft.au=Yue,%20Yanmei&rft.date=2024-10-17&rft.volume=235&rft.issue=12&rft.spage=7641&rft.epage=7660&rft.pages=7641-7660&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-024-04112-9&rft_dat=%3Cproquest_cross%3E3133856599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133856599&rft_id=info:pmid/&rfr_iscdi=true |